Гравитационный разворотГравитационный разворот — манёвр космического аппарата в гравитационном поле небесного тела, при котором направление тяги совпадает или противоположно направлению движения, изменяющемуся под действием силы тяжести. Гравитационный разворот обычно используется при выведении аппарата на орбиту и при посадке с орбиты. Благодаря тому, что ракета постоянно поворачивается в направлении движения, гравитационный разворот позволяет минимизировать гравитационные и аэродинамические потери, затраты на изменение направления движения, а также поперечные нагрузки на аппарат. Запуск космического аппарата на орбиту![]() ![]() ![]() ![]() Как правило, космический аппарат стартует вертикально с поверхности планеты, а целью является набор высоты и скорости, соответствующей опорной или рабочей орбите. В процессе полёта также накладываются дополнительные ограничения, в частности[1]:
В рамках этих ограничений нужно найти такую траекторию, которая позволит вывести аппарат на орбиту с минимальными затратами топлива. В простейшем случае можно сначала взлететь вертикально вверх на нужную высоту, а потом начать набор горизонтальной скорости. Но вертикальный подъём невыгоден из-за гравитационных потерь, а ждать замедления ракеты в апогее невыгодно из-за эффекта Оберта. Вместо этого гораздо эффективнее сразу ускоряться в нужном направлении до тех пор, пока ракета не приобретёт необходимый начальный импульс, причём ракета всё время должна быть повёрнута в направлении движения, чтобы вся тяга шла на разгон, без потерь на управление (т. е. на изменение направления движения), а также чтобы уменьшить сопротивление воздуха и вызванные им поперечные нагрузки на ракету. Для этого в самом начале полёта ракета немного, на несколько градусов наклоняется в сторону своей будущей орбиты. Суммарная сила тяжести и тяги ускоряет ракету не прямо по её оси, а немного ближе к горизонту. Система управления разворачивает ракету в направлении движения, постоянно поддерживая нулевой угол атаки, в результате чего ракета летит по дуге, приближаясь к орбите. В тот момент, когда апогей траектории достигает будущей орбиты, двигатель отключается, и ракета летит по инерции по баллистической траектории. В районе апогея двигатель включается ещё раз, и ракета набирает необходимую орбитальную скорость. В этом случае при определении траектории есть только одна независимая переменная — угол, на который ракета изначально отклоняется от вертикали, от которого зависит вся дальнейшая траектория. При взлёте в безвоздушном пространстве, например, с Луны, траекторию выгодно делать как можно более настильной, при условии, что она будет проходить на безопасном расстоянии от неровностей рельефа, это позволяет уменьшить гравитационные потери[2]. При взлёте через атмосферу угол отклонения следует делать меньше, а траекторию — более крутой, чтобы выйти из плотных слоёв атмосферы раньше и на меньшей скорости, таким образом уменьшив аэродинамические потери. Кроме того, при полёте в атмосфере нужно также учитывать поперечные аэродинамические нагрузки при отклонении от нулевого угла атаки. В простейшем случае система управления задаёт тангаж по заранее заданной таблице от времени. Но из-за турбулентностей воздуха и неравномерной работы двигателей небольшое отклонение в начале полёта может привести значительному уходу с намеченной траектории. Поэтому на большинстве ракет через некоторое время после старта задействуется система инерциальной навигации, которая, обладая информацией о высоте и скорости, корректирует возникающие отклонения. Посадка при отсутствии атмосферы
Но при отсутствии атмосферы, как, например, при посадке на Луну, тормозить приходится одними двигателями. При этом оптимальная по расходу топлива последовательность действий такая:
Для расчёта траектории посадки можно использовать те же вычисления, что и для траектории подъёма с той лишь разницей, что масса топлива будет увеличиваться по мере набора высоты[5]. При конструировании лунного модуля программы «Аполлон» инженеры столкнулись с проблемой отсутствия надёжных ориентиров для ориентации корабля во время посадки на Луну. Но им удалось найти очень простое и достаточно точное приближение: посадочный модуль поддерживал постоянное направление относительно командного модуля, который ко времени посадки находился выше на орбите[6]. Вычисление траектории![]() Ускорение ракеты складывается из ускорения, приобретаемого двигателем и ускорения свободного падения:
Выразим тяговооружённость — отношение тяги к силе тяжести:
Возьмём систему координат, совмещённую с направлением движения (см. рис.): (Тангаж по-прежнему отсчитывается от горизонтали.) Подставим в (1): В итоге получаем систему дифференциальных уравнений: Эту систему уравнений можно было бы решить аналитически, если бы масса ракеты (а с ней — и тяговооружённость) не менялась из-за расхода топлива. Но при необходимости эти уравнения интегрируются численно[7]. См. такжеПримечания
Литература
|
Portal di Ensiklopedia Dunia