Задача о перемещении дивана![]() Задача о перемещении дивана была сформулирована канадским математиком австрийского происхождения Мозером[англ.] в 1966 году. Постановка задачиЗадача сводится к двумерной идеализации житейской проблемы о перемещении мебели. В двумерном пространстве определите жёсткое тело наибольшей площади А, которое может быть перемещено в Г-образном «коридоре», образованном «тоннелями» шириной в единицу измерения, сходящимися под прямым углом. Полученное значение А принято называть константой дивана (в альтернативных формулировках той же самой задачи этот предмет является идеализацией стола, или же баржи или корабля в Г-образном канале). Поиски решения![]() Так как полукруг единичного радиуса легко проводится за угол «коридора», оценкой снизу для константы дивана является . Простая оценка сверху[как?] показывает также, что константа дивана не превышает [1][2], где величина является наибольшей длиной отрезка, который может быть перемещен в данном коридоре. Джон Хаммерсли[англ.] существенно повысил оценку снизу до с помощью фигуры, напоминающей телефонную трубку (см. рис.), состоящей из двух четвертей кругов единичного радиуса по обеим сторонам от прямоугольника с удалённым полукругом радиуса [3][4][5]. В 1992 году Джозеф Гервер дополнительно улучшил оценку константы дивана снизу до . Его фигура ограничена восемнадцатью дугами аналитических кривых[6][7]. В июне 2017 Йоав Каллус и Дэн Ромик улучшили оценку сверху для константы дивана до .[8] В 2024 году был опубликован препринт, согласно которому решение Гервера является оптимальным[9]. Численная оптимизацияЧисленная оптимизация позволяет определить константы дивана для различных стандартных кривых. ![]() В диване Хаммерсли используются внешние круги единичного радиуса, но если снять это ограничение, то константу дивана можно повысить до ~2.21302924761374 при этом внешние четверти кругов будут иметь радиус ~0.91363796343492 и общая длина будет равна ~3.21033227646884. Назовем такой диван обобщенным диваном Хаммерсли. Разбив внешний круг на два круга, с точкой касания при касательной в 45 градусов, можно получить константу дивана ~2.21918785. Радиус окружности при основании R1~1.16134066, а её центр смещен вниз на B~0.01740046. Радиус верхней окружности равен R2~0.71499114, а длина дивана L~3.22797195. Если дополнительно произвести оптимизацию с учётом угла наклона касательной, в точке касания внешних кругов, то можно получить константу дивана ~2.219237814, при этом R1~1.19650, B~0.02777, R2~0.72655, касательная при 39.86407 градусах и L~3.22848. Примечания
|
Portal di Ensiklopedia Dunia