Измеримое множество — в математике множество, имеющее измеримую характеристическую функцию (т. е. функцию, равную 1 на этом множестве и равную 0 на дополнении этого множества)[1].
Пусть имеется полукольцоS с единицей E и σ-аддитивная мера на нём — это значит, что для любого множества можно определить внешнюю меру. Тогда множество A называется измеримым относительно меры , если
где R(S) — минимальное кольцо, содержащее S, а — симметрическая разность множеств. При этом множество измеримых множеств будет σ-алгеброй, а ограничение внешней меры на это множество — σ-аддитивной мерой.
Свойства
Объединение конечной или счётной совокупности измеримых множеств есть измеримое множество[2].
Пожалуйста, дополните её ещё хотя бы несколькими предложениями и уберите это сообщение. Если статья останется недописанной, она может быть выставлена к удалению. Для указания на продолжающуюся работу над статьёй используйте шаблон {{subst:Редактирую}}. Администраторам и подводящим итоги: эта пометка оставлена 2009-12-12. Просьба очень короткие заготовки статей ранее чем через два дня после создания не удалять.(12 декабря 2009)
Пожалуйста, после исправления проблемы исключите её из списка параметров. После устранения всех недостатков этот шаблон может быть удалён любым участником.