Касательное пространство ЗарисскогоКасательное пространство Зарисского — конструкция в алгебраической геометрии, позволяющая построить касательное пространство в точке алгебраического многообразия. Эта конструкция использует не методы дифференциальной геометрии, а только методы общей, и, в более конкретных ситуациях, линейной алгебры. МотивировкаРассмотрим плоскую алгебраическую кривую, заданную полиномиальным уравнением Опишем касательное пространство к этой кривой в начале координат. Выбросим из уравнения все члены порядка больше первого, останется уравнение Возможны два случая: либо , в этом случае касательное пространство определяется как вся аффинная плоскость (все её точки удовлетворяют уравнению выше), в этом случае начало координат является особой точкой кривой. В противном случае, касательное пространство — это прямая, рассматриваемая как одномерное аффинное пространство. (Более точно, в исходной аффинной плоскости нет никакого начала координат. Однако при определении касательного пространства в точке p естественно выбрать начало координат в этой точке.) ОпределениеКокасательное пространство локального кольца с максимальным идеалом m определяется как где m2 — произведение идеалов. Кокасательное пространство является векторным пространством над полем вычетов . Векторное пространство, двойственное к нему, называется касательным пространством R[1]. Это определение обобщает данный выше пример на более высокие размерности. Грубо говоря, — это кольцо ростков функций в точке p. Это кольцо локально, его максимальный идеал — ростки функций, равных нулю в p (максимальный идеал локального кольца состоит в точности из необратимых элементов). Так как точка p принадлежит многообразию, нас интересуют только элементы m, факторизация по m2 соответствует выбрасыванию членов больших степеней. Поскольку мы начинали с кольца функций, соответствует «линейным функционалам» на касательном пространстве, то есть пространству, двойственному к касательному. Касательное пространство и кокасательное пространство к схеме X в точке P — это (ко)касательное пространство локального кольца . Благодаря функториальности Spec, естественное отображение факторизации индуцирует гомоморфизм , где X=Spec(R), P — точка Y=Spec(R/I). Этот гомоморфизм часто используют для вложения в [2] (например, касательное пространство многообразия, вложенного в аффинное пространство, естественным образом вложено в касательное пространство аффинного пространства). Так как морфизмы полей инъективны, сюръекция полей вычетов, индуцированная g, является изоморфизмом. Таким образом, g индуцирует морфизм k касательных пространств, поскольку Так как k сюръективен (является гомоморфизмом факторизации), то двойственное линейное отображение инъективно (является вложением). Аналитический случайЕсли V — подмногообразие n-мерного векторного пространства, определённое идеалом I (идеалом функций, равных нулю на этом многообразии), кольцу R соответствует кольцо Fn/I, где Fn — кольцо ростков гладких/аналитических/голоморфных функций на векторном пространстве, I — ростки функций из идеала. Тогда касательное пространство Зарисского в точке x — это где — идеал функций соответствующего типа, равных нулю в точке x. В примере с алгебраической кривой, , а СвойстваЕсли R — нётерово локальное кольцо, размерность касательного пространства не меньше размерности R: R называется регулярным кольцом, если выполняется равенство. Если локальное кольцо многообразия V в точке x регулярно, говорят, что x — регулярная точка многообразия. В противном случае x называется особой точкой. Существует интерпретация касательного пространства при помощи гомоморфизмов в кольцо дуальных чисел На языке схем, морфизмы из Spec k[t]/t2 в схему X над k соответствует выбору рациональной точки x ∈ X(k) (точки с координатами из поля k) и элемента касательного пространства в точке x[3]. Таким образом, эти морфизмы имеет смысл называть касательными векторами. Примечания
Литература
Ссылки
|
Portal di Ensiklopedia Dunia