У этого термина существуют и другие значения, см. Квазигруппа.
Квазигруппа — магма, в которой всегда возможно деление. В отличие от группы, квазигруппа не обязана быть ассоциативной[1] и не обязана иметь нейтральный элемент. Любая ассоциативная квазигруппа с определенным на ней нейтральным элементом является группой.
Квазигруппой называют пару (Q, *) из непустого множестваQ с бинарной операцией * : Q × Q → Q, удовлетворяющей следующему условию: для любых элементов a и b из Q найдутся единственные элементы x и y из Q, такие что
a * x = b
y * a = b
Решения этих уравнений иногда записывают так:
x = a \ b
y = b / a
Операции \ и / называют левым делением и правым делением.
Если между элементами двух квазигрупп Q и R можно установить биекцию (то есть они равномощны как множества), говорят, что Q и R имеют одинаковый порядок. Если при этом существуют перестановки A, B, C, действующие на элементах этих квазигрупп, такие что
(x, y) = [xA, yB]C
(здесь (,) и [ , ] — операции в Q и R соответственно), то такие квазигруппы называют изотопными.
Для любой квазигруппы существует лупа, которой она изотопна. Если же лупа изотопна группе, то эта лупа является группой. В более общем случае: если полугруппа изотопна лупе, то они изоморфны и обе изоморфны некоторой группе. Изотопия, в некотором[каком?] смысле, эквивалентна изоморфизму групп, но существуют квазигруппы изотопные, но не изоморфные группам.
Множество {±1, ±i, ±j, ±k}, где ii = jj = kk = +1 и все остальные произведения определяются так же, как в кватернионах, является квазигруппой с единицей (лупой).
Галкин В. М. Квазигруппы в сборнике статей Алгебра, топология, геометрия. Том 26, 1988 г.Итоги науки и техн. Сер. Алгебра, топол., геом. Том 26. М.: ВИНИТИ, 1988. С. 3-44.
У этой статьи по математике есть несколько проблем, помогите их исправить:
Пожалуйста, помогите улучшить эту статью.(19 августа 2012)
Достоверность этой статьи поставлена под сомнение.
Необходимо проверить точность фактов и достоверность сведений, изложенных в этой статье. Соответствующую дискуссию можно найти на странице обсуждения.(19 августа 2012)
Пожалуйста, после исправления проблемы исключите её из списка параметров. После устранения всех недостатков этот шаблон может быть удалён любым участником.