Квазичастица
Квазичасти́ца (от лат. quas(i) «наподобие», «нечто вроде») — понятие в квантовой механике, введение которого позволяет существенно упростить описание сложных квантовых систем со взаимодействием, таких, как твёрдые тела и квантовые жидкости. Например, чрезвычайно сложное описание движения электронов в полупроводниках может упроститься введением квазичастицы под названием электрон проводимости, отличающейся от электрона массой (имеет эффективную массу) и движущейся в свободном пространстве. Для описания колебаний атомов в узлах кристаллической решётки в теории конденсированного состояния вещества используют фононы, для описания распространения элементарных магнитных возбуждений в системе взаимодействующих спинов — магноны. ВведениеИдея использования квазичастиц была впервые предложена Л. Д. Ландау в теории ферми-жидкости для описания жидкого гелия-3, позже её стали использовать в теории конденсированного состояния вещества. Описывать состояния таких систем напрямую, решая уравнение Шрёдингера с порядка 1023 взаимодействующими частицами, невозможно. Обойти эту трудность удаётся сведением задачи взаимодействия частиц к более простой задаче с невзаимодействующими квазичастицами. Квазичастицы в ферми-жидкостиВведение квазичастиц для ферми-жидкости производится плавным переходом от возбуждённого состояния идеальной системы (без взаимодействия между частицами), полученного из основного, с функцией распределения , путём добавления частицы с импульсом , адиабатическим включением взаимодействия между частицами. При таком включении возникает возбуждённое состояние реальной ферми-жидкости с тем же импульсом, так как он сохраняется при столкновении частиц. По мере включения взаимодействия, добавленная частица вовлекает в движение окружающих её частиц, образуя возмущение. Такое возмущение называют квазичастицей. Полученное таким образом состояние системы соответствует реальному основному состоянию плюс квазичастица с импульсом и энергией, соответствующей данному возмущению. При таком переходе роль частиц газа (в случае отсутствия взаимодействия) переходит к элементарным возбуждениям (квазичастицам), число которых совпадает с числом частиц и которые, как и частицы, подчиняются статистике Ферми — Дирака. Квазичастицы в твёрдых телахФонон как квазичастицаОписание состояния твёрдых тел, непосредственно решая уравнение Шредингера для всех частиц, практически невозможно из-за большого числа переменных и сложности учёта взаимодействия между частицами. Упростить такое описание удаётся введением квазичастиц — элементарных возбуждений относительно некого основного состояния. Часто учёт только низших энергетических возбуждений относительно этого состояния достаточен для описания системы, так как, согласно распределению Больцмана, состояния с большими значениями энергий даются с меньшей вероятностью. Рассмотрим пример применения квазичастиц для описания колебаний атомов в узлах кристаллической решётки. Примером возбуждений с низкими энергиями может служить кристаллическая решётка при абсолютном нуле температуры, когда к основному состоянию, при котором колебания в решётке отсутствуют, добавляется элементарное возмущение определённой частоты, то есть фонон. Бывает, что состояние системы характеризуется несколькими элементарными возбуждениями, а эти возбуждения, в свою очередь, могут существовать независимо друг от друга, в таком случае это состояние интерпретируется системой невзаимодействующих фононов. Однако не всегда удаётся описать состояние невзаимодействующими квазичастицами из-за ангармонического колебания в кристалле. Тем не менее, во многих случаях элементарные возбуждения могут рассматриваться как независимые. Таким образом, можно приближенно считать, что энергия кристалла, связанная с колебанием атомов в узлах решётки, равна сумме энергии некоторого основного состояния и энергий всех фононов. Квантование колебаний на примере фононаРассмотрим скалярную модель кристаллической решётки, согласно которой атомы колеблются вдоль одного направления. Пользуясь базисом плоских волн, напишем выражение для смещений атомов в узле: В такой форме называют обобщёнными координатами. Тогда лагранжиан системы: выразится в терминах в виде: Отсюда выражается канонический импульс и гамильтониан: Квантование действия производится требованием операторных правил коммутации для обобщённой координаты и импульса (): Для перехода к фононному представлению используют язык вторичного квантования, определив операторы рождения и уничтожения квантового фононного поля: Прямым вычислением можно проверить, что требуемые правила коммутации выполняются для операторов: Заменив знак комплексного сопряжения на и учтя, что энергия — чётная функция квазиимпульса, (из однородности), получим выражения для кинетической и потенциальной частей гамильтониана: Тогда гамильтониан примет вид: Иначе можно переписать: где
Такое описание колебаний в кристалле называется гармоническим приближением. Оно соответствует лишь рассмотрению квадратичных членов по смещениям в гамильтониане. Квазичастицы в ферромагнетике, магноныВ случае ферромагнетика, при абсолютном нуле температуры, все спины выстраиваются вдоль одного направления. Такое расположение спинов соответствует основному состоянию. Если один из спинов отклонить от заданного направления и предоставить систему самой себе, начнёт распространяться волна. Энергия этой волны будет равна энергии возбуждения кристалла, связанной с изменением ориентации спина атома. Эту энергию можно рассматривать как энергию некоторой частицы, которую и называют магноном. Если энергия ферромагнетика, связанная с отклонением спинов, невелика, то её можно представить в виде суммы энергий отдельных распространяющихся спиновых волн или, выражаясь иначе, в виде суммы энергий магнонов. Магноны, как и фононы, подчиняются статистике Бозе — Эйнштейна Свойства
Сравнение квазичастиц с обычными частицамиМежду квазичастицами и обычными элементарными частицами существует ряд сходств и отличий. Во многих теориях поля (в частности, в конформной теории поля) не делают вообще никаких различий между частицами и квазичастицами. Сходства
Различия
Другие квазичастицы
Литература
Ссылки
|
Portal di Ensiklopedia Dunia