Критерий СильвестраКритерий Сильвестра определяет, является ли симметричная квадратная матрица положительно (отрицательно, неотрицательно) определённой. Пусть квадратичная форма имеет в каком-то базисе матрицу Тогда эта форма положительно определена тогда и только тогда, когда все её угловые миноры размеров i × i, где i пробегает все целые числа от 1 до n включительно, положительны; а отрицательно определена тогда и только тогда, когда знаки чередуются, причём [1]. Здесь угловыми минорами матрицы называются определители вида ДоказательствоКритерий положительной определённости квадратичной формыКритерий гласит, что
Его доказательство основано на методе Якоби приведения квадратичной формы к каноническому виду. Доказательство необходимостиПусть — положительно определённая квадратичная форма. Тогда j-й диагональный элемент положителен, так как , где — вектор со всеми нулевыми координатами, кроме j-й. При приведении матрицы к каноническому виду в силу невырожденности угловых миноров стро́ки не нужно будет переставлять, поэтому в итоге знаки главных миноров матрицы не изменятся. А в каноническом виде диагональные элементы положительны, а значит и миноры положительны; следовательно, (так как их знак не менялся при преобразованиях) у положительно определённой квадратичной формы в любом базисе главные миноры матрицы положительны. Доказательство достаточностиДана симметричная квадратичная форма, все угловые миноры которой положительны. Рассмотрим сначала первый диагональный элемент в каноническом виде: его знак определяется первым угловым минором. Далее, знак числа определяет знак (i + 1)-го элемента в диагональном виде. Получается, что в каноническом виде все элементы на диагонали положительные, то есть квадратичная форма определена положительно.[2] Критерий отрицательной определённости квадратичной формы
Доказательство сводится к предыдущему случаю, так как матрица является отрицательно определённой тогда и только тогда, когда матрица является положительно определённой. При замене матрицы на противоположную главные миноры нечётного порядка меняют знак, а главные миноры чётного порядка остаются такими же в силу основных свойств определителей. Критерий полуопределённости квадратичной формыДля положительно полуопределённых матриц критерий звучит подобным образом: форма положительно полуопределена тогда и только тогда, когда все главные миноры неотрицательны. Здесь главным минором называется определитель подматрицы, симметричной относительно главной диагонали, то есть подматрицы, у которой множества задающих её номеров столбцов и строк одинаковые (напр. 1-й и 3-й столбцы и строки, на пересечении которых расположена матрица)[3]. Неотрицательности только угловых миноров недостаточно, что следует из контрпримера : , но форма не является положительно полуопределённой. См. такжеПримечания
|
Portal di Ensiklopedia Dunia