Дана выборка из измерений для каждого из испытуемых, которую можно представить в виде таблицы[2][3]:
Условия
№ объекта
В качестве нулевой гипотезы рассматривается следующая: «между полученными в разных условиях измерениями имеются лишь случайные различия»[2]. Выбирается уровень значимости, например, (вероятность ошибочно отклонить нулевую гипотезу).
Проверка гипотезы
Для начала получим таблицу рангов по строкам, при котором получаем ранги объекта при ранжировке [3]:
Ранги
№ объекта
Получим суммы рангов и введём другие обозначения:
Для проверки гипотезы будем использовать эмпирическое значение критерия — статистику:
,
которую можно записать также в виде:
Нулевая гипотеза принимается, если критическое значение критерия превосходит эмпирическое:
Для малых значений и для критического значения Фридмана существуют таблицы для разных значений уровня значимости (или доверительной вероятности[3]).
дегустаторов оценивают различные сорта вин. Имеют ли вина значимые отличия?
Сварные швы, сделанные сварщиками с использованием сварочных горелок, были оценены по качеству. Есть ли отличия в качестве у какой-либо из горелок?
Апостериорный анализ
Апостериорный анализ (англ.post-hoc analysis) был предложен Шайхом и Хамерли (1984)[4], а также Коновер (1971, 1980)[5] для определения того, какие условия существенно отличаются друг от друга, на основании различия их средних рангов[6].
Программная реализация
Тест Фридмана содержится во многих пакетах программ для статистической обработки данных (SPSS, R[7] и других[8]).
Не все статистические пакеты поддерживают апостериорный анализ для теста Фридмана, но программный код можно найти, например, для SPSS[9] и R[10].
Примечания
↑Кобзарь А. И. («Прикладная математическая статистика») называет этот критерий критерием Фридмена-Кендалла-Бэбингтона Смита
Кобзарь А. И. Прикладная математическая статистика. Для инженеров и научных работников. — М.: Физматлит, 2006. — С. 484-486. — 816 с. — ISBN 5-9221-0707-0.
Friedman, Milton. A correction: The use of ranks to avoid the assumption of normality implicit in the analysis of variance (англ.) // Journal of the American Statistical Association : journal. — American Statistical Association, 1939. — March (vol. 34, no. 205). — P. 109. — doi:10.2307/2279169. — JSTOR2279169.