Линейный классификаторЛинейный классификатор — способ решения задач классификации, когда решение принимается на основании действия линейного оператора над входными данными. Класс задач, которые можно решать с помощью линейных классификаторов, обладают, соответственно, свойством линейной сепарабельности. Определение![]() Пусть вектор из действительных чисел представляет собой входные данные, а на выходе классификатора вычисляется показатель y по формуле: здесь - действительный вектор весов, а f - функция преобразования скалярного произведения. (Иными словами, вектор весов - ковариантный вектор или линейная форма отображения в R.) Значения весов вектора определяются в ходе машинного обучения на подготовленных образцах. Функция f обычно простая пороговая функция, отделяющая один класс объектов от другого. В более сложных случаях Функция f имеет смысл вероятности того или иного решения. Операцию линейной классификации для двух классов можно себе представить как отображение объектов в многомерном пространстве на гиперплоскость, в которой те объекты, которые попали по одну сторону разделяющей линии, относятся к первому классу ("да"), а объекты по другую сторону - ко второму классу ("нет")). Линейный классификатор используется когда важно проводить быстрые вычисления с большой скоростью. Он неплохо работает, когда входной вектор разрежен. Линейные классификаторы могут хорошо срабатывать в многомерном пространстве, например, для классификации документов по матрице встречаемости слов. В подобных случаях считается, что объекты хорошо регуляризируемы. Генеративная и дискриминативная моделиСуществует два подхода к определению параметров для линейного классификатора - генеративные или дискриминативные модели.[1][2] Генеративная модель использует условное распределение . Например:
Дискриминативные модели стремятся улучшить качество выходных данных на наборе образцов для обучения. Например:
Дискриминативные модели более точны, однако при неполной информации в данных легче использовать условное распределение. Дискриминативное обучениеОбучение при использовании дискриминативных моделей строится через "Обучение с учителем" , то есть через процесс оптимизации выходных данных на заданных образцах для обучения. При этом определяется функция потерь, измеряющая несогласование между выходными данными и желаемыми результатами. Формально задача обучения (как оптимизации) записывается как: [4] где
Наиболее популярны кусочно-линейная функция и логарифмическая (Перекрёстная энтропия) функции потерь. Если функция регуляризации R выпуклая, то ставится проблема выпуклой оптимизации[4]. Для решения этих задач используется много алгоритмов, в частности метод стохастического градиентного спуска, метод градиентного спуска, L-BFGS, метод координатного спуска и Метод Ньютона.[источник не указан 1053 дня] См. такжеПримечания
Литература
|
Portal di Ensiklopedia Dunia