Метод итераций РэлеяМетод итераций Рэлея — итеративный алгоритм вычисления собственных значений и векторов, который дополняет идею обратного степенного метода итеративным вычислением текущего приближения к собственному значению с помощью отношения Рэлея. Метод Рэлея имеет очень большую скорость сходимости, и часто для получения решения требуется всего лишь несколько итераций. Для симметричных и эрмитовых матриц при достаточно хорошо выбранных начальных значениях сходимость кубическая. Однако время выполнения каждой итерации обычно пропорционально кубу размера матрицы, в то время как для обратного степенного и степенного метода оно квадратично. АлгоритмКак и в обратном степенном методе, мы задаём некоторое начальное приближение к собственному значению матрицы и начальный вектор , который может быть либо случайным, либо известным приближением к собственному вектору. Далее итеративно вычисляем новые приближения к собственному вектору по формуле , где единичная матрица. В завершение итерации вычисляем следующее приближение к собственному значению с помощью отношения Рэлея: Пример программной реализацииНиже приведен пример реализации на языке GNU Octave. function x = rayleigh(A, epsilon, mu, x)
x = x / norm(x);
% the backslash operator in Octave solves a linear system
y = (A - mu * eye(rows(A))) \ x;
lambda = y' * x;
mu = mu + 1 / lambda
err = norm(y - lambda * x) / norm(y)
while err > epsilon
x = y / norm(y);
y = (A - mu * eye(rows(A))) \ x;
lambda = y' * x;
mu = mu + 1 / lambda
err = norm(y - lambda * x) / norm(y)
end
end
Ссылки
|
Portal di Ensiklopedia Dunia