Пусть дана система линейных уравнений: . Причём матрица системы — это действительная матрица, обладающая следующими свойствами: , то есть это симметричнаяположительно определённая матрица. Тогда процесс решения СЛАУ можно представить как минимизацию следующего функционала:
Поскольку минимизируемый функционал квадратичный, то процесс должен дать ответ на -й итерации, однако при реализации метода на компьютере существует погрешность представления вещественных чисел, в результате чего может потребоваться и больше итераций. Так же оценивать точность можно по относительной невязке , и прекращать итерационный процесс, когда невязка станет меньше заданного числа.
Алгоритм для предобусловленной системы
Пусть предобусловленная система имеет вид: , тогда алгоритм метода для такой системы можно записать следующим образом:
Подготовка перед итерационным процессом
Выберем начальное приближение
-я итерация метода
После итерационного процесса
, где — приближенное решение системы, — общее число итераций метода.
Критерий остановки
В данном случае можно использовать те же критерии остановки, что и для обычной системы, только с учётом предобуславливания. Например относительная невязка станет вычисляться как: , однако можно пользоваться и невязкой исходной системы, которая вычисляется следующим образом:
Особенности и обобщения
Как и все методы на подпространствах Крылова, метод сопряженных градиентов от матрицы требует только возможность умножать её на вектор, что приводит к возможности использовать специальные форматы хранения матрицы(такие, как разреженный) и сэкономить память на хранении матрицы.
Метод часто используется для решения конечноэлементых СЛАУ.
У метода есть обобщения: метод бисопряженных градиентов, для работы с несимметричными матрицами. И комплексный метод сопряженных градиентов, где матрица может содержать комплексные числа, но должна удовлетворять условию: , то есть быть самосопряженной-положительно определённой матрицей.