Граф с мощностью 2. На изображении показан максимизирующий рассматриваемое отношение способ удаления рёбер: граф разбивается на три части, при этом удаляется 4 рёбра между этими частями, что даёт отношение 4/(3-1)=2.
Мощностьнеориентированного графа — характеристика графа, равная минимальному отношению количества рёбер, удалённых из графа, к числу компонент, полученных в результате такого удаления (уменьшенного на 1). Этот метод позволяет определить зоны высокой концентрации рёбер. Мощность графа сходна с понятием жёсткости графа, которая, однако, определяется через процедуру удаления вершин, а не рёбер.
Вычисление мощности графа может быть осуществлено за полиномиальное время. Первый полиномиальный алгоритм обнаружил Каннингем (1985). Алгоритм для вычисления мощности с наилучшей сложностью, принадлежащий Трубину (1993), использует разложение потока Голдберга и Рао (1998) и работает за время .
Свойства
Если является разбиением, максимизирующим отношение и для является сужением графа G на множество , то .
Теорема Татта — Нэша — Уильямса: является максимальным числом не пересекающихся по рёбрам остовных деревьев, которые могут содержаться в G.
В отличие от задачи о разбиении графа, получаемые при вычислении мощности разбиения не обязательно сбалансированы (то есть почти одного размера).
Пожалуйста, после исправления проблемы исключите её из списка параметров. После устранения всех недостатков этот шаблон может быть удалён любым участником.