Полный граф является однозначно раскрашиваемым, поскольку существует только одна допустимая раскраска — каждой вершине назначается свой цвет.
Любое k-дерево однозначно раскрашиваемо в (k + 1) цветов. Однозначно раскрашиваемы в 4 цвета планарные графы — это в точности графы Аполлония, то есть планарные 3-деревья[1].
Свойства
Некоторые свойства однозначно k-раскрашиваемого графа G с n вершинами и m рёбрами:
Минимально несовершенный граф — это граф, в котором любой подграф является совершенным. Удаление любой вершины из минимально несовершенного графа оставляет однозначно раскрашиваемый подграф.
Однозначно рёберно-раскрашиваемый граф — это рёберно k-цветный граф, допускающий только одну (правильную) рёберную k-раскраску с точностью до перестановки цветов. Только пути и циклы допускают однозначную рёберную 2-раскраску. Для любого значения kзвёздыK1,k являются однозначно рёберно k-раскрашиваемыми графами. Однако Вильсон [4] выдвинул гипотезу, а Томасон[5] доказал, что при k ≥ 4 это единственные члены этого семейства. Существуют, однако, однозначно рёберно 3-раскрашиваемые графы, не попадающий в эту классификацию, как, например, граф треугольной пирамиды.
Если кубический граф однозначно рёберно 3-раскрашиваем, он должен иметь в точности три гамильтонова цикла, образованного рёбрами двух (из трёх) цветов, однако некоторые кубические графы только с тремя гамильтоновыми циклами однозначной рёберной 3-раскраски не имеют[6].
Любой простой планарный кубический граф, допускающий единственную рёберную 3-раскраску, содержит треугольник[1], но Тат[7] заметил, что обобщённый граф ПетерсенаG(9,2) является непланарным графом без треугольников, однако он однозначно рёберно 3-раскрашиваем. Много лет этот граф был единственным примером таких графов (см.статьи Болобаша[8] и Швенка[9]), но теперь известно бесконечно много непланарных кубических графов без треугольников, имеющих однозначную рёберную 3-раскраску[6].
Пустые графы[англ.]*, пути и циклы с длиной, делящейся на 3, являются однозначно тотально раскрашиваемыми графами.
Махмудиан и Шокроллахи[10] высказали гипотезу, что только эти графы и составляют семейство.
Некоторые свойства однозначно тотально k-раскрашиваемого графа G с n вершинами:
E. S. Mahmoodian, M. A. Shokrollahi. Combinatorics Advances. — Dordrecht; Boston; London: Kluwer Academic Publishers, 1995. — Т. 329. — С. 321–324. — (Mathematics and its applications).
A. G. Thomason. Advances in Graph Theory (Cambridge Combinatorial Conf., Trinity College, Cambridge, 1977). — 1978. — Т. 3. — С. 259–268. — (Annals of Discrete Mathematics).
M. Truszczyński. Finite and Infinite Sets. Vol. I, II. Proceedings of the sixth Hungarian combinatorial colloquium held in Eger, July 6–11, 1981 / András Hajnal, László Lovász, Vera T. Sós. — North-Holland, Amsterdam, 1984. — Т. 37. — С. 733–748. — (Colloq. Math. Soc. János Bolyai).
William T. Tutte. Colloquio Internazionale sulle Teorie Combinatorie (Rome, 1973), Tomo I. — Accad. Naz. Lincei, Rome, 1976. — С. 193–199. Atti dei Convegni Lincei, No. 17.. Как процитировано у Белкастро и Хааса (Belcastro, Haas 2015).
Пожалуйста, после исправления проблемы исключите её из списка параметров. После устранения всех недостатков этот шаблон может быть удалён любым участником.