Ориентированная раскраска графаОриентированная раскраска графа — это специальный вид раскраски графов. А именно, это назначение цветов вершинам ориентированного графа[1], которое
Другое определение: Ориентированная k-раскраска орграфа H есть ориентированный гомоморфизм в k-вершинный орграф H*[2]. Ориентированное хроматическое числоОриентированное хроматическое число орграфа G — минимальное число цветов, необходимое в ориентированной раскраске. Это число обычно обозначается как . То же самое определение может быть распространено на неориентированные графы путём определения ориентированного хроматического числа неориентированного графа как максимального хроматического числа из всех его ориентаций[3][2]. ПримерыОриентированное хроматическое число ориентированного цикла с 5 вершинами равно пяти. Если цикл раскрасить в четыре и менее цвета, то либо две смежные вершины окажутся выкрашены одинаково, либо две вершины через одну будут иметь один цвет. В последнем случае рёбра, соединяющие эти две вершины с вершиной посередине, будут неправильно раскрашены (второе правило) — обе дуги имеют одинаково выкрашенные концы, но соединяют цвета в обратном направлении. Таким образом, никакой раскраски с четырьмя и менее цветами невозможно. Если же все вершины выкрасить в разные цвета, получим допустимую ориентированную раскраску. СвойстваОриентированная раскраска может существовать только для орграфов без петель и без ориентированных 2-циклов, поскольку петля даёт один цвет на обоих концах дуги, а 2-цикл недопустим по второму правилу — два цвета соединены в противоположных направлениях. Если указанные условия выполняются, всегда существует ориентированная раскраска, например, если назначить всем вершинам различные цвета. Если ориентированная раскраска является полной, в смысле, что никакие два цвета не могут быть слиты в один цвет с получением правильной раскраски, то раскраска соответствует единственному гомоморфизму в турнир. Турнир имеет по одной вершине для каждого цвета в раскраске. Для каждой пары цветов имеется дуга в раскрашенном графе с этими двумя цветами на концах, которая соответствует ориентации ребра в турнире между вершинами соответствующих цветов. Неполные раскраски также могут быть представлены гомоморфизмом в турнир, но в этом случае соответствие между раскрасками и гомоморфизмами не будет один-к-одному. Неориентированные графы с ограниченным родом, ограниченной степенью или ограниченным ациклическим хроматическим числом также имеют ограниченное ориентированное хроматическое число[3]. Оценки ориентированного хроматического числаОриентированное хроматическое число графа может существенно отличаться от его (обычного) хроматического числа. Например, существуют двудольные графы с произвольно большим ориентированным хроматическим числом, достаточно заменить каждое ребро графа на путь длиной 2, и тогда концы каждого такого пути в полученном графе обязаны краситься в разные цвета[4]. Курсель[5] доказал, что для любого плоского графа, а Распуд и Соупина[6] улучшили результат до 80. Бородин с соавторами опубликовали следующую теорему[7]: Теорема: Пусть G — плоский граф обхвата g, тогда В другой статье Бородина[8] ограничение в (1) теоремы было ослаблено до 13. Примечания
Литература
|
Portal di Ensiklopedia Dunia