Осо́бое реше́ниеобыкновенного дифференциального уравнения — понятие теории обыкновенных дифференциальных уравнений, чаще всего связанное с уравнениями не разрешенными относительно производной. Существует несколько определений особых решений, не всегда эквивалентных друг другу. Одно из наиболее распространенных в настоящее время определений следующее.
где — -гладкая функция в некоторой области . Решение называется особым решением уравнения (1), если каждая точка соответствующем ему интегральной кривой является точкой локальной неединственности решения задачи Коши с начальным условием
.
Другими словами, в каждой точке особое решение касается другого решения, которое не совпадает с ним тождественно ни в какой сколь угодно малой окрестности этой точки[1].
Свойства
Особое решение (точнее, его график) является огибающей семейства интегральных кривых уравнения (1).
Дискриминантная кривая уравнения (1) — это множество (например, кривая или совокупность кривых, но также бывает и точкой или пустым множеством) на плоскости переменных , задаваемое уравнениями . Особое решение уравнения (1), если оно существует, всегда содержится в дискриминантной кривой этого уравнения.[2] Дискриминантная кривая может состоять из нескольких кривых, обладающих разными свойствами, некоторые из них могут быть графиками особых решений, а некоторые могут и не быть. Обратное не верно: дискриминантная кривая не обязательно является решением уравнения (а если является, то не обязательно особым)[2].
Из сказанного выше следует, что для практического отыскания особых решений уравнения конкретного уравнения нужно сначала найти его дискриминантную кривую, а затем проверить, является ли она (каждая её ветвь, если их несколько) особым решением уравнения (1), или нет[2].
Примеры
1. Дискриминантная кривая уравнения Чибрарио — координатная ось
— является не решением, а геометрическим местом точек возврата его интегральных кривых.
2. Дискриминантная кривая уравнения — координатная ось
— является решением этого уравнения, но его график не пересекается ни с какими другими интегральными кривыми этого уравнения, поэтому это решение не является особым.
Особые решения дифференциальных уравнений (жирные линии): уравнения Клеро (слева) и уравнения (справа).
3. Простыми примерами дифференциальных уравнений, имеющих особые решения, являются уравнение Клеро и уравнение , неособые решения которого задаются формулой с постоянной интегрирования , а особое решение имеет вид .
4. Дискриминантная кривая уравнения состоит из двух непересекающихся ветвей: и . Обе они являются решениями этого уравнения. Однако первая из них является особым решением, а вторая — нет: в каждой точке линии она касается какой-либо другой интегральной кривой этого уравнения, а к линии интегральные кривые лишь приближаются асимптотически при [3].
Примечания
↑Филиппов А. Ф. Введение в теорию дифференциальных уравнений. — М.: УРСС, 2007, гл. 2, параграф 8, стр. 62.
↑ 123Филиппов А. Ф. Введение в теорию дифференциальных уравнений. — М.: УРСС, 2007, гл. 2, параграф 8.
↑Филиппов А. Ф. Введение в теорию дифференциальных уравнений. — М.: УРСС, 2007, гл. 2, параграф 8, пример 5.
Литература
Арнольд В. И. Дополнительные главы теории обыкновенных дифференциальных уравнений. — М.: Наука, 1978.
Арнольд В. И. Геометрические методы в теории обыкновенных дифференциальных уравнений. — Ижевск: Изд-во Удмуртского гос. ун-та, 2000.
Романко В. К. Курс дифференциальных уравнений и вариационного исчисления. — М.: Физматлит, 2001.
Филиппов А. Ф. Введение в теорию дифференциальных уравнений. — М.: УРСС, 2004, 2007.