Предел (математика)Преде́л — одно из основных понятий математического анализа, на него опираются такие фундаментальные разделы анализа, как непрерывность, производная, интеграл, бесконечные ряды и др. Различают предел последовательности и предел функции[1]. Понятие предела на интуитивном уровне использовалось ещё во второй половине XVII века Ньютоном, а также математиками XVIII века, такими как Эйлер и Лагранж. Первые строгие определения предела последовательности дали Больцано в 1816 году и Коши в 1821 году. ИсторияОбоснование терминаОперация взятия предела в математическом анализе называется предельным переходом[2]. Интуитивное понятие о предельном переходе использовалось ещё учеными Древней Греции при вычислении площадей и объёмов различных геометрических фигур. Методы решения таких задач в основном были развиты Архимедом. При создании дифференциального и интегрального исчислений математики XVII века (и, прежде всего, Ньютон) также явно или неявно использовали понятие предельного перехода. Впервые определение понятия предела было введено в работе Валлиса «Арифметика бесконечных величин» (XVII век), однако исторически это понятие не лежало в основе дифференциального и интегрального исчислений. Лишь в XIX веке в работах Коши теория пределов была использована для строгого обоснования математического анализа. Дальнейшей разработкой теории пределов занимались Вейерштрасс и Больцано. С помощью теории пределов в первой половине XIX века было, в частности, обосновано использование в анализе бесконечных рядов, которые явились удобным аппаратом для построения новых функций[3]. Символ пределаОбщепринятый символ предела был предложен Симоном Люилье (1787 год) в следующем формате: это обозначение получило поддержку Коши (1821). Точка после lim вскоре исчезла[4]. Близкое к современному обозначение предела ввёл Вейерштрасс, хотя вместо привычной нам стрелки он использовал знак равенства: [5]. Стрелка появилась в начале XX века сразу у нескольких математиков[6]. Обозначения для одностороннего предела вида первым предложил Дирихле (1837) в виде: Мориц Паш (1887) ввёл другие важные понятия — верхнего и нижнего предела, которые записывал в виде: и соответственно. За рубежом эта символика стала стандартной, а в отечественной литературе преобладают другие обозначения: введенные Альфредом Прингсхаймом в 1898 году[7]. Предел последовательностиПределом последовательности называют объект, к которому члены последовательности в некотором смысле стремятся или приближаются с ростом порядкового номера. Число называется пределом последовательности , если . Предел последовательности обозначается . Допускается обозначение .[источник не указан 1580 дней] Свойства:
Предел функции![]() Функция имеет предел в точке , если для всех значений , достаточно близких к , значение близко к . Число b называется пределом функции в точке , если существует , такое что выполняется . Для пределов функций справедливы свойства, аналогичные пределам последовательностей, например, — предел суммы равен сумме пределов, если все пределы существуют. Понятие предела последовательности на языке окрестностейПусть — некоторое множество, на котором определено понятие окрестности (например, метрическое пространство). Пусть — последовательность точек (элементов) этого множества. Говорят, что есть предел этой последовательности, если вне любой окрестности точки лежит конечное число членов последовательности, или Замечательные пределыЗамечательные пределы — термины, использующиеся в советских и российских учебниках по математическому анализу для обозначения двух широко известных математических тождеств со взятием предела:
Замечательные пределы и их следствия используются при раскрытии неопределённостей для нахождения других пределов. Вариации и обобщенияУльтрапредел — конструкция, позволяющая определить предел для широкого класса математических объектов. В частности, она работает для числовых последовательностей и последовательностей точек в метрическом пространстве, допускает обобщения на последовательности метрических пространств и последовательности функций на них. Эта конструкция часто используется, чтобы избежать многократного перехода к подпоследовательности. Эта конструкция использует существование неглавного ультрафильтра, доказательство которого в свою очередь использует аксиому выбора. См. также
Примечания
Литература
|
Portal di Ensiklopedia Dunia