Противоположная теорема — это утверждение, в котором условие и заключение исходной теоремы заменены их отрицаниями. Каждая теорема может быть выражена в форме импликации, в которой посылка является условием теоремы, а следствие является заключением теоремы. Тогда теорема, записанная в виде является противоположной к ней[1].
Здесь — отрицание, — отрицание . Доказательство необходимости и достаточности условий теоремы для её заключения сводится к доказательству одной из двух противоположных теорем ( и ; и ) или одной из двух обратных теорем ( и ; и )[2].
Если условие и/или заключение теоремы являются сложными суждениями, то противоположная теорема допускает множество не равносильных друг другу формулировок. Например, если условием теоремы является , а заключением : , то для противоположной теоремы существует пять форм:[3]