Расслоение на окружностиРасслоение на окружности — это расслоение, в котором слоями являются окружности . Ориентированные расслоения на окружности известны также как главные U(1)-расслоения. В физике расслоения на окружности являются естественными геометрическими установками для электромагнетизма. Расслоение на окружности является частным случаем расслоений на сферы[англ.]. Как 3-многообразияРасслоение на окружности поверхностей является важным примером 3-многообразий[англ.]. Более общим классом 3-многообразий являются расслоения Зейферта, которые можно рассматривать как вид «вырожденных» расслоений на окружности или как расслоение на окружности двумерных орбиобразий. Отношение к электродинамикеУравнения Максвелла соответствует электромагнитному полю, представленному 2-формой F с гомологически эквивалентным[англ.] нулю. В частности, всегда существует ковариантный вектор A, электромагнитный потенциал, (эквивалентно, аффинная связность), такой, что Если дано расслоение на окружности P многообразия M и его проекция
имеем гомоморфизм
где является обратным образом. Каждый гомоморфизм соответствует монополю Дирака. Целые группы когомологий соответствуют квантованию электрического заряда. Эффект Ааронова — Бома можно понимать как голономию связи на ассоциированном линейном расслоении, описывающую волновую функцию электрона. В сущности, эффект Ааронова — Бома не является квантово-механическим эффектом (вопреки популярному представлению), так как здесь не вовлекается и не требуется никакого квантования при построении расслоения. Примеры
Поскольку и характеристические классы отображаются обратно нетривиально, мы получаем, что линейное расслоение, ассоциированное с пучком , имеет класс Чженя . КлассификацияКлассы изоморфности главных расслоений многообразия M находятся во взаимнооднозначном соответствии с гомотопическими классами[англ.] отображений , где называется классифицирующим пространством для U(1)[англ.]. Заметим, что является бесконечномерным комплексным проективным пространством[англ.], и что оно является примером пространства Эйленберга-Маклейна[англ.] . Такие расслоения классифицируются элементами второй целочисленной группы когомологий многообразия M, поскольку
Этот изоморфизм реализуется классом Эйлера[англ.]. Эквивалентно, он является первым классом Чженя гладкого комплексного линейного расслоения[англ.] (в основном потому, что окружность гомотопически эквивалентна , комплексной плоскости с удалённым началом координат. А тогда комплексное линейное расслоение с удалённой нулевой секцией гомотопически эквивалентно расслоению на окружности) Расслоение на окружности является главным расслоением тогда и только тогда, когда ассоциированное отображение гомотопно нулю, что верно тогда и только тогда, когда расслоение является послойно ориентированными. Для более общего случая, когда расслоение на окружности многообразия M не может быть ориентированным, классы изоморфизмов находятся во взаимнооднозначном соответствии с гомотопическими классами отображений . Это следует из расширения групп , где . Комплексы ДелиняВышеприведённая классификация применима только к расслоениям на окружности в общем случае. Соответствующая классификация для гладких расслоений на окружности, или, скажем, расслоение на окружности с аффинной связностью требует более сложную теорию когомологий. Так, гладкие расслоения на окружности классифицируются второй когомологией Делиня , расслоения на окружности с аффинной связностью классифицируются посредством , в то время как классифицирует линейные расслоения на снопы[англ.]. См. такжеПримечания
Литература
|
Portal di Ensiklopedia Dunia