Рациональная поверхностьРациональная поверхность — это поверхность, бирационально эквивалентная проективной плоскости, или, другими словами, рациональное многообразие[англ.] размерности два. Рациональные поверхности являются простейшими из примерно 10 классов поверхностей классификации Энрикеса — Кодаиры комплексных поверхностей, и это были первые исследованные поверхности. СтруктураЛюбую неособую рациональную поверхность можно получить путём неоднократного раздутия[англ.] минимальной рациональной поверхности. Минимальными рациональными поверхностями являются проективная плоскость и поверхности Хирцебруха[англ.] Σr для r = 0 или r ≥ 2. Инварианты: Все плюрироды[англ.] равны 0 и фундаментальная группа тривиальна. 1 0 0 1 1+n 1, 0 0 1 где n равен 0 для проективной плоскости, 1 для поверхностей Хирцебруха[англ.] и больше 1 для других рациональных поверхностей. Группа Пикара[англ.] является нечётной унимодулярной решёткой I1,n, за исключением поверхностей Хирцебруха[англ.] Σ2m, для которых это чётная унимодулярная решётка II1,1. Теорема КастельнуовоГвидо Кастельнуово доказал, что любая комплексная поверхность, для которой q и P2 (иррегулярность и второй плюрирод) равны нулю, является рациональной. Это используется в классификации Энрикеса — Кодаиры для распознавания рациональных поверхностей. Зарисский[1] доказал, что теорема Кастельнуово верна также для полей положительной характеристики. Из теоремы Кастельнуово следует также, что любая унирациональная[англ.] комплексная поверхность рациональна. Большинство унирациональных комплексных многообразий размерности 3 и выше не являются рациональными. Для характеристики p > 0 Зарисский[1] нашёл пример унирациональных поверхностей (поверхности Зарисского[англ.]), не являющихся рациональными. Одно время было неясно, являются комплексные поверхности с нулевыми q и P1 рациональными или нет, но Федериго Энрикес нашёл контрпример (поверхность Энрикеса[англ.]). Примеры рациональных поверхностей
См. такжеПримечания
Литература
|
Portal di Ensiklopedia Dunia