Сапог ШварцаСапог Шварца (от нем. Schwarzscher Stiefel) — семейство приближений кругового цилиндра с помощью полиэдральных поверхностей. Предельная площадь этих приближений может быть сделана произвольно большой. Эта конструкция позволяет увидеть несостоятельность определения площади поверхности как точной верхней грани площадей вписанных в неё полиэдральных поверхностей, в противоположность тому, что длина кривой может быть определена как точная верхняя грань длин вписанных в неё ломаных. ИсторияКонструкция была предложена в 1890 году Германом Шварцем как контрпример к ошибочному определению площади поверхности в книге Жозефа Серре[1]. Независимо от Шварца, тот же пример был найден Джузеппе Пеано. Его учитель Анджело Дженокки[итал.] также обсуждал этот вопрос со Шварцем. Дженокки проинформировал Шарля Эрмита, который использовал ошибочное определение Серре в своем курсе. После этого Эрмит пересмотрел свой курс и опубликовал заметку Шварца во втором издании своих лекций.[2] КонструкцияВысота цилиндра делится плоскостями, параллельными основаниям, на равных частей. В образовавшиеся сечения (окружности) вписываются правильные -угольники, причём соседние -угольники повёрнуты относительно друг друга на угол чтобы вершины вышележащего -угольника находились над серединами сторон нижележащего -угольника. Затем вершины -угольников соединяются так, что образуется поверхность из треугольников; каждый её «слой» — антипризма. Полученная многогранная поверхность называется сапогом Шварца. Если , то размеры этих треугольников становятся сколь угодно малыми, то есть сапог Шварца стремится к цилиндру. Свойства![]()
ПримечанияЛитература
|
Portal di Ensiklopedia Dunia