Сингулярная функция

Сингуля́рная фу́нкция — это непрерывная функция, производная которой равна нулю почти всюду.

Исторически первым примером сингулярной функции является Канторова лестница.

Существуют другие примеры сингулярных функций. Например, функция Салема[укр.] и функция Минковского, множество точек роста которых заполняет полностью отрезок .

Сингулярная функция встречается, к примеру, при изучении последовательности пространственно модифицированных фаз или структур в твёрдых телах и магнетиках, описываемых в модели Френкеля — Конторовой.

Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia

Kembali kehalaman sebelumnya