Слабая гомотопическая эквивалентность

Слабая гомотопическая эквивалентность — отображение между топологическими пространствами индуцирующее изоморфизм гомотопических групп.

Определение

Пусть и линейно связные пространства. Слабая гомотопическая эквивалентность из в есть непрерывное отображение такое, что индуцированные отображения биективны при всех для некоторой (а значит для любой) пары точек .

Свойства

  • Существование слабой гомотопической эквивалентности , вообще говоря не влечёт существование слабой гомотопической эквивалентности .
  • Изоморфность групп и вообще говоря не влечёт существование слабой гомотопической эквивалентности .
  • Любой конечный симплециальный комплекс слабо гомотопически эквивалентен конечному топологическому пространству.[1]

Примечания

  1. P. Alexandroff. „Diskrete Räume.“ Матем. сб. 2 (1937), S. 501–519.
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia

Kembali kehalaman sebelumnya