СуперсимметрияСуперсимме́трия, или симме́трия Фе́рми — Бо́зе, — гипотетическая симметрия, связывающая бозоны и фермионы в природе[1]. Абстрактное преобразование суперсимметрии связывает бозонное и фермионное квантовые поля, так что они могут превращаться друг в друга. Образно можно сказать, что преобразование суперсимметрии может переводить вещество во взаимодействие (или в излучение), и наоборот. Суперсимметрия предполагает удвоение (как минимум) числа известных элементарных частиц за счёт наличия суперпартнёров. Для фотона — фотино, кварка — скварк, хиггса — хиггсино, W-бозон — ви́но, глюон — глюино и так далее. Суперпартнёры должны иметь значение спина, на полуцелое число отличающееся от значения спина у исходной частицы[2][3]. Несмотря на продолжительные поиски, суперсимметричные частицы так и не были найдены[4]. ИсторияВпервые суперсимметрию предложили в 1973 году австрийский физик Юлиус Весс и итальянский физик Бруно Зумино для описания ядерных частиц[5][6]. Математический аппарат теории был открыт ещё раньше, в 1971—1972 годах, советскими физиками Юрием Гольфандом и Евгением Лихтманом[7] из ФИАН, а также Дмитрием Волковым и Владимиром Акуловым[8][9][10] из ХФТИ. Суперсимметрия впервые возникла в контексте версии теории струн, которую предложили Пьер Рамон, Джон Шварц и Андре Невё, однако алгебра суперсимметрии позднее стала успешно использоваться и в других областях физики. Суперсимметричное расширение Стандартной моделиОсновная физическая модель современной физики высоких энергий — Стандартная модель — не является суперсимметричной, но может быть расширена до суперсимметричной теории. Минимальное суперсимметричное расширение Стандартной модели называется «минимальная суперсимметричная Стандартная модель» (MSSM). В MSSM необходимо добавить дополнительные поля так, чтобы построить суперсимметричный мультиплет с каждым полем Стандартной модели. Для материальных фермионных полей — кварков и лептонов — нужно ввести скалярные поля — скварки и слептоны, по два поля на каждое поле Стандартной модели. Для векторных бозонных полей — глюонов, фотонов, W- и Z-бозонов — вводятся фермионные поля глюино, фотино, зино и ви́но, также по два на каждую степень свободы Стандартной модели. Для нарушения электрослабой симметрии в MSSM нужно ввести 2 хиггсовских дуплета (в обычной Стандартной модели вводится один хиггсовский дуплет), то есть в MSSM возникает 5 хиггсовских степеней свободы — заряженный бозон Хиггса (2 степени свободы), лёгкий и тяжёлый скалярный бозон Хиггса и псевдоскалярный бозон Хиггса. В любой реалистической суперсимметричной теории должен присутствовать сектор, нарушающий суперсимметрию. Наиболее естественным нарушением суперсимметрии является введение в модель так называемых мягких нарушающих членов. В настоящее время рассматриваются несколько вариантов нарушения суперсимметрии.
Первый вариант MSSM предложили в 1981 году американские физики Говард Джорджи и Савас Димопулос. Достоинства идеи суперсимметрииТеории, включающие суперсимметрию, дают возможность решить несколько проблем, присущих Стандартной модели:
Проблемы идеи суперсимметрии
Применение математического аппарата суперсимметрииНезависимо от существования суперсимметрии в природе, математический аппарат суперсимметричных теорий оказывается полезным в самых различных областях физики. В частности, суперсимметричная квантовая механика позволяет находить точные решения весьма нетривиальных уравнений Шрёдингера. Суперсимметрия оказывается полезной в некоторых задачах статистической физики (например, суперсимметричная сигма-модель). Суперсимметричная квантовая механикаСуперсимметричная квантовая механика отличается от квантовой механики тем, что включает супералгебру SUSY, в противоположность квантовой теории поля. Суперсимметричная квантовая механика часто становится актуальной при изучении динамики суперсимметричных солитонов, и из-за упрощенного характера полей, которые зависят от времени (а не пространства-времени), в этом подходе достигнут большой прогресс, и эта теория теперь изучается самостоятельно. Квантовая механика SUSY рассматривает пары гамильтонианов, которые находятся в определённом математическом отношении, которые называются гамильтонианами-партнерами. А соответствующие члены потенциальной энергии, входящие в гамильтонианы, тогда известны как потенциалы-партнеры. Основная теорема показывает, что для каждого собственного состояния одного гамильтониана, его гамильтониан-партнер имеет соответствующее собственное состояние с той же энергией. Этот факт можно использовать для вывода многих свойств спектра собственных значений. Это аналогично новому описанию SUSY, которое относилось к бозонам и фермионам. Можно представить «бозонный гамильтониан», собственными состояниями которого являются различные бозоны нашей теории. А SUSY-партнер этого гамильтониана будет «фермионным», а его собственными состояниями будут фермионы теории. У каждого бозона будет фермионный партнер с равной энергией. Суперсимметрия в физике конденсированного состоянияКонцепции SUSY оказалась полезной для некоторых применений квазиклассических приближений. Кроме того, SUSY применяется к системам с усредненным беспорядком, как квантовым, так и неквантовым (посредством статистической механики), уравнение Фоккера — Планка — это пример неквантовой теории. «Суперсимметрия» во всех этих системах возникает из-за того, что моделируется одна частица, и поэтому «статистика» не имеет значения. Использование метода суперсимметрии обеспечивает математически строгую альтернативу методу реплик, но только в невзаимодействующих системах, который пытается решить так называемую «проблему знаменателя» при усреднении по беспорядку. Подробнее о приложениях суперсимметрии в физике конденсированного состояния см. Ефетов (1997)[14]. Экспериментальная проверкаВ 2011 году на Большом адронном коллайдере (БАК) была проведена серия экспериментов, в ходе которых проверялись фундаментальные выводы теории Суперсимметрии, а также верность описания ею физического мира. Как заявила 27 августа 2011 года профессор Ливерпульского университета Тара Ширс[англ.], эксперименты не подтвердили основные положения теории[15][16]. При этом Тара Ширс уточнила, что не нашла подтверждений упрощённой версии теории суперсимметрии, однако полученные результаты не опровергают более сложный вариант теории. К концу 2012 года на детекторе LHCb Большого адронного коллайдера была накоплена статистика по распаду странного B-мезона на два мюона[17]. Предварительные результаты совпали с прогнозом Стандартной модели: (3,66 ± 0,23)⋅10-9, тогда как её суперсимметричное расширение прогнозирует более высокую вероятность распада. Весной 2015 года коллаборации LHCb и CMS объединили свои данные по распаду странного B-мезона на мюон-антимюонную пару и получили вероятность распада 2,8+0,7 Результаты проверки электрического дипольного момента электрона (2013) также не подтвердили варианты суперсимметричных теорий[19]. Тем не менее суперсимметричные теории могут быть подтверждены другими экспериментами, в частности, наблюдениями за распадом нейтрального B0-мезона.[20]. После перезапуска весной 2015 года, БАК планирует начать работу на мощности 13 ТэВ и продолжит поиск отклонений от статистических предсказаний Стандартной модели.[21][22].
Отсутствие экспериментальных данных, подтверждающих теорию суперсимметрии, привело к появлению критиков данной теории даже среди бывших энтузиастов суперсимметрии. Так, теоретик Михаил Шифман ещё в октябре 2012 опубликовал критическую статью[23]. В статье он прямо написал, что теория суперсимметрии бесперспективна, что от неё надо отказаться ради новых идей и ради нового поколения физиков-теоретиков (чтобы они не стали потерянным поколением). См. такжеПримечания
Литература
Ссылки
|
Portal di Ensiklopedia Dunia