Счислитель КуммераСчислитель Куммера (также аддиатор, арифметическая линейка) — компактная цифровая суммирующая машина предельно простой конструкции, появившаяся в середине XIX века и выпускавшаяся до 1982 года[1]. Представляет собой конструкцию из нескольких зубчатых реек, промаркированных символами ↓, 0…9, ↑ (стрелок может не быть). К счислителю прилагался заострённый металлический штырь, которым и сдвигали рейки. В простейшем виде счислитель умеет складывать числа, перенос в следующий разряд работает полуавтоматически по принципу «вычти 10−x, перенеси 1». Снизу (или на обратной стороне) счислителя могут стоять прорези для вычитания. Умножение реализуется как многократное сложение. Существуют сложные алгоритмы для деления. ИсторияФранцуз Сезар Казэ[2] в 1707 году придумал рейки, прорези длиной в 10 единиц и метки, указывающие, куда надо вести штырь: вверх или вниз. Перенос в следующий разряд выполнялся вручную. Несмотря на сомнительную полезность, устройство получило определённое распространение. Изобретение искривлённой прорези, полуавтоматически производящей перенос, приписывается петербургскому учителю музыки и механику-любителю Генриху Куммеру (1846), дальнему родственнику математика Эрнста Куммера. Позднее устройство переизобрёл француз Тронсэ (1889). Немецкая компания Addiator начала выпускать устройство около 1920 и сделала аддиатор товарным знаком, ставшим нарицательным[3]. На Западе он был популярен, наряду с более дорогой Curta, и даже некоторое время конкурировал с микрокалькуляторами за счёт многократно меньшей цены. К 1961 году было сделано более 5 млн подлинных аддиаторов, самые дорогие из них щеголяли роскошным латунным корпусом[4]. Существовали счислители, предназначенные специально для расчётов в фунтах/шиллингах/пенсах, футах/дюймах/долях дюйма, шестнадцатеричные счислители для программистов[5], гибриды счислителя с логарифмической линейкой: первый умел складывать и вычитать, вторая — умножать и делить. В СССР устройство также изготовлялось, но не стало таким известным, как русские счёты и «железный Феликс». Существовали карманные суммирующие машины с полноценным механизмом переноса, они также управлялись штырём. Наиболее распространённые схемы — цепная[6] и дисковая[7][8]. Существовал счислитель (калькулятор Бэра-Фултона) с дисками вместо реек. Он был не столь компактным, зато делал перенос по всем разрядам одним движением штыря. Устройство не было успешным: оно было несколько дороже дисковых машин с полноценным переносом и значительно дороже традиционных реечных счислителей[9]. Инструкция![]() ![]() СбросЕсли какая-то рейка в положении ↓, переставим её с помощью штыря на любое другое значение. После этого нужно полностью вытянуть ручку вверху счислителя и вернуть её на место. Существовали компактные счислители — у них не было ручки сброса, взамен рейки высовывались из корпуса. Их надо было задвинуть ладонью. СложениеСбрасываем счислитель. Набираем слагаемое таким образом: вставляем штырь на шкале сложения напротив соответствующей цифры и ведём его вниз до упора. Индикатор покажет первое слагаемое. Теперь набираем второе слагаемое с такими дополнениями:
Пример: 17 + 25. (Во всех примерах счислитель оснащён символами ↓↑.) Сбрасываем счислитель. Набираем на верхней шкале 17 — в разряде десятков вставляем штырь около цифры 1 и ведём его до упора вниз, в разряде единиц от семёрки вниз. После этого набираем на верхней шкале 25 — сначала от двойки вниз (на индикаторе 37), затем от пятёрки вверх и по изгибу (на индикаторе 42).
Пример: 7,56 + 1,49 Сбрасываем счислитель. Набираем на верхней шкале 756. Затем набираем на верхней шкале 149 — например, от единицы вниз, от четвёрки вниз, затем от девятки вверх и по изгибу. На индикаторе 8↑5. Проводим во втором разряде от нуля вверх и по изгибу — на индикаторе 905. Ответ: 9,05. (Если бы мы прибавляли 1,49 начиная с младшего разряда, нам бы не мешали стрелки вверх, и мы бы сразу получили 9,05.) Пример: 1,99 + 0,05 + 0,08 Сбрасываем счислитель. Набираем на верхней шкале 199. Проводим от пятёрки вверх и по изгибу (на индикаторе 1↑4). Проводим от восьмёрки вверх (на индикаторе 1↑2), но по изгибу уже нельзя — потому в разряде десятков проводим от единицы вверх по изгибу. Получаем ответ 2,12. ВычитаниеУменьшаемое набирается, как и раньше, на шкале сложения. Снизу (или на обратной стороне устройства) есть шкала вычитания. Именно на этой шкале набирается вычитаемое, таким же образом: если штырь попадает на красное деление, ведём его вниз и по изгибу; если на белое — то вверх до упора. В некоторых счислителях шкала вычитания получается установкой подвижной накладки на шкалу сложения. Или даже без накладки: на одной шкале цифры и для сложения, и для вычитания[10]. Тогда цвета обратные сложению: красное деление — вверх до упора, белое — вниз и по изгибу. Если в результате расчёта одна из реек оказалась в положении ↓, «вычтем» 0, проведя штырём вниз и по изгибу. Если в положении ↓ оказался верхний разряд — результат отрицателен. Хоть мы и не можем прочитать результат, счислитель его помнит, и как только сумма станет положительной, мы снова сможем её прочитать. Иногда делают и индикатор отрицательных чисел: показаниям ↓, 0, 1…9, ↑ на основном индикаторе соответствуют ↓, ↓, 9…1, 0 в последнем разряде и −, 9, 8…0, ↑ в остальных. Чтобы прочесть отрицательное число, нужно избавиться от всех ↓ и минусов в середине/конце числа, проведя штырём от 0 вниз и по изгибу. На шестнадцатеричном счислителе часто требуется провести вычитание по компьютерным правилам: 5 − 7 = FFFE. Результат этой операции смотрят на основном индикаторе, физически и/или мысленно избавившись от всех стрелок ↓. Пример: 6,34 − 8,54 + 5,36 Сбрасываем счислитель. Набираем 634. На шкале вычитания набираем 854: от 8-ки вниз по изгибу, от 5-ки вниз по изгибу, от 4-ки вверх. На верхнем индикаторе ↓780. На нижнем — соответственно −21↓. Проведя вниз от 0 и по изгибу, получим ↓77↑ сверху и −220 снизу — промежуточный ответ −2,2. Прибавив 5,36 по обычным правилам, получаем 3,16. Умножение и делениеПроизводятся обычными для счётов и суммирующих машин методами — многократным сложением и вычитанием. Например, чтобы умножить 123 на 456, надо добавить 45600 один раз, 4560 дважды и 456 трижды. Чтобы делить 156:21, из 156000 многократно вычитаем 21000, затем 2100… Получив остаток меньший, чем 21, надлежащим образом округляем результат и ставим десятичную запятую: 156000:21 = 7428 (ост.12), и 156:21 ≈ 7,429. Очень много приёмов упрощённого умножения и деления описано в статье Счёты. Два приёма для деления.
ТеорияСначала рассмотрим счислитель без символов ↑↓. Он представляет собой механический десятичный сумматор. Длина щели ровно 10 единиц, и если довести штырь, например, от 6-ки до самого низа, мы автоматически прибавляем к сумматору 6. Если же провести от 6-ки до верха — мы вычитаем 4. До верха и по изгибу — −4+10, то есть прибавить 6 с переносом. Такая схема переноса неполная и не может совершить перенос в двух и более разрядах: 199 + 1 = 200. Взамен она застревает при попытке увеличить 90 на 10, и пользователь должен своими силами вычесть 90 и прибавить 100 — то есть провести от 1 вверх и по изгибу. Отрицательные числа хранятся дополнительным кодом: 9999 = −1, 9998 = −2. Более прогрессивные счислители добавляют две псевдоцифры: ↑ = 10, ↓ = −1. Чтобы нормализовать эти цифры, надо вычесть 10 в одном разряде и прибавить в другом — то есть провести от 0 и по изгибу. Чтобы превратить прямой код −1 в дополнительный 9999, надо взять модуль, вычесть единицу и инвертировать все цифры — отсюда такое устройство индикатора отрицательных чисел. И здесь примитивная схема переноса оказывается очень кстати, ведь запись 0↓98 — это действительно отрицательное число: −100 + 98 = −2. Примечания
Ссылки |
Portal di Ensiklopedia Dunia