Тангенциальнозначная формаТангенциальнозначные формы — это обобщение дифференциальных форм, при котором множеством значений формы является касательное расслоение к многообразию. ОпределениеТангенциальнозначной формой на многообразии называется сечение тензорного произведения касательного и внешней степени кокасательного расслоений к многообразию: Операции
Производная ЛиЧастным случаем тангенциальнозначных форм являются векторные поля. Производная Ли от тензорного поля по векторному полю определяется стандартным образом: где — фазовый поток, соответствующий векторному полю . Эта операция связана с внутренним умножением дифференциальной формы на векторное поле и внешним дифференцированием формулой гомотопии: то есть где — коммутатор в градуированной алгебре дифференцирований тангенциальнозначных форм. Для произвольной тангенциальнозначной формы производная Ли определяется по аналогии: Свойства Скобка Фрёлихера-НейенхёйсаСкобка Фрёлихера-Нейенхёйса двух тангенциальнозначных форм и определяются как такая единственная тангенциальнозначная форма , для которой Эта операция градуированно антикоммутативна и удовлетворяет градуированному тождеству Якоби. Если воспринимать почти комплексную структуру как касательнозначную 1-форму, её тензор Нейенхёйса (тензор, препятствующий отысканию комплексных локальных карт) выражается через скобку Фрёлихера-Нейенхёйса как .[1] Условие «интегрируемости» некой структуры как зануление некоторой её скобки с самой собой общо: например, условие ассоциативности алгебры можно определять как зануление скобки Герстенхабера на пространстве кодифференцирований свободной коалгебры, порождённой подлежащим векторным пространством алгебры , посажённым в градуировку 1 (билинейные умножения суть то же самое, что кодифференцирования градуировки 1)[2]. Скобка Нейенхёйса-РичардсонаСкобка Нейенхёйса-Ричардсона (алгебраические скобки) двух тангенциальнозначных форм и определяются как такая единственная тангенциальнозначная форма , для которой Эта операция градуированно антикоммутативна и удовлетворяет градуированному тождеству Якоби. Явный вид для скобки двух форм , : Связанные определенияФорма называется припаивающей, если она лежит в . Примечания
Литература
|
Portal di Ensiklopedia Dunia