Те́нзор эне́ргии-и́мпульса (ТЭИ) — симметричный тензор второго ранга (валентности), описывающий плотность и поток энергии и импульса полей материи[1] и определяющий взаимодействие этих полей с гравитационным полем.
Тензор энергии-импульса может быть записан в виде действительной симметричной матрицы 4x4:
В нём обнаруживаются следующие физические величины:
T00 — объёмная плотность энергии. Как правило, она должна быть положительной, однако теоретически допускается существование локальных пространственных областей с отрицательной плотностью энергии. В частности, подобную область можно создать с помощью эффекта Казимира[2].
T10, T20, T30 — компоненты импульса плотности, умноженные на c.
T01, T02, T03 — компоненты потока энергии (вектора Пойнтинга), делённые на c. В силу симметрии Tμν соблюдается равенство: T0μ = Tμ0
Подматрица 3 x 3 из чисто пространственных компонент
есть 3-мерный тензор плотности потока импульса, или тензор напряжений со знаком минус.
В механике жидкости диагональные её компоненты соответствуют давлению, а прочие составляющие — тангенциальным усилиям (напряжениям или в старой терминологии — натяжениям), вызванным вязкостью.
Для жидкости в покое тензор энергии-импульса сводится к диагональной матрице , где есть плотность массы, а — гидростатическое давление.
В простом случае пылевидной материи тензор энергии-импульса записывается как
где — плотность массы (покоя), — компоненты 4-скорости — записано также для простейшего случая, когда все пылевые частицы движутся с одинаковой скоростью хотя бы локально, а если последнее не так, выражение надо ещё суммировать (интегрировать) по скоростям.
Канонический тензор энергии-импульса
В специальной теории относительности физические законы одинаковы во всех точках пространства-времени, поэтому трансляции 4-координат не должны изменять уравнений движения поля. Таким образом, согласно теореме Нётер, бесконечно малым пространственно-временным трансляциям должен соответствовать сохраняющийся нётеровский поток, который в данном случае называется каноническим ТЭИ.
Для лагранжиана (плотности функции Лагранжа) , зависящего от полевых функций и их первых производных, но не зависящего от координат, функционал действия будет инвариантен относительно трансляций:
Из теоремы Нётер будет следовать закон сохранение канонического ТЭИ (записан в галилеевых координатах)
Этот тензор неоднозначен. Свойство неоднозначности можно использовать для приведения, вообще говоря, несимметричного тензора к симметризованному виду добавлением тензорной величины где тензор антисимметричен по двум последним индексам . Действительно, для симметризованного ТЭИ
автоматически следует закон сохранения
Метрический тензор энергии-импульса
В общей теории относительности так называемый метрический ТЭИ выражается через вариационную производную по метрическому тензору в точке пространства-времени от инвариантной относительно замен координат лагранжевой плотности функционала действия:
где
Этот тензор энергии-импульса очевидно симметричен. В уравнения Эйнштейна метрический ТЭИ входит в качестве внешнего источника гравитационного поля:
где — тензор Риччи, — скалярная кривизна. Для этого тензора в силу инвариантности действия относительно координатных подстановок справедлив дифференциальный закон сохранения в виде
Тензор энергии-импульса в классической электродинамике
↑Ландау Л. Д., Лифшиц Е. М. Теория поля. — Издание 7-е, исправленное. — М.: Наука, 1988. — С. 115. — («Теоретическая физика», том II). — ISBN 5-02-014420-7.