Теорема о произведении отрезков хорд![]() ![]() ![]() Теорема о произведении отрезков хорд описывает соотношения отрезков, образованных двумя пересекающимися хордами окружности. В теореме утверждается, что произведения длин отрезков каждой из хорд равны. Формулировка теоремыДля двух хорд AC и BD, пересекающихся в точке S, выполняется следующее равенство: Обратное также верно, т. е. если для двух отрезков AC и BD, пересекающихся в точке S, вышеприведённое равенство выполняется, то их концы A, B, C и D лежат на одной окружности. Другими словами, если диагонали четырёхугольника ABCD пересекаются в точке S и выполняется вышеупомянутое равенство, то этот четырёхугольник является вписанным. Степень точкиЗначения двух произведений в теореме о хордах зависит от расстояния точки пересечения S от центра окружности и называется абсолютным значением степени точки S. Более точно это можно выразить следующим образом: где r является радиусом окружности, а d является расстоянием между центром окружности и точкой пересечения S. Это свойство следует непосредственно из применения теоремы о хордах к третьей хорде, проведённой через точку S и центр окружности M (см. рисунок). Наряду с теоремой о секущей и касательной и теоремой о двух секущих, теорема о пересекающихся хордах является одним из трёх основных случаев более общей теоремы о двух пересекающихся прямых и окружности — теоремы о степени точки. Доказательство теоремыТеорему можно доказать с помощью подобных треугольников (через теорему о вписанном угле). Рассмотрим углы треугольников ASD и BSC:
Это означает, что треугольники ASD и BSC подобны, а потому: Вы можете посмотреть интерактивную иллюстрацию к теореме и её доказательству[1][2]. Примечания
Литература
|
Portal di Ensiklopedia Dunia