Теоремы Гёделя о неполнотеТеорема Гёделя о неполноте и вторая теорема Гёделя[~ 1] — две теоремы математической логики о принципиальных ограничениях формальной арифметики и, как следствие, всякой формальной системы, в которой можно определить основные арифметические понятия: натуральные числа, 0, 1, сложение и умножение. Первая теорема утверждает, что если формальная арифметика непротиворечива, то в ней существует невыводимая и неопровержимая формула. Вторая теорема утверждает, что если формальная арифметика непротиворечива, то в ней невыводима формула, содержательно утверждающая непротиворечивость этой арифметики. Обе эти теоремы были доказаны Куртом Гёделем в 1930 году (опубликованы в 1931) и имеют непосредственное отношение ко второй проблеме из знаменитого списка Гильберта. ИсторияЕщё в начале XX века Давид Гильберт провозгласил цель аксиоматизировать всю математику, и для завершения этой задачи оставалось доказать непротиворечивость и логическую полноту арифметики натуральных чисел. 7 сентября 1930 года в Кёнигсберге проходил научный конгресс по основаниям математики, и на этом конгрессе 24-летний Курт Гёдель впервые обнародовал две фундаментальные теоремы о неполноте, показавшие, что программа Гильберта не может быть реализована: при любом выборе аксиом арифметики существуют теоремы, которые невозможно ни доказать, ни опровергнуть простыми (финитными) средствами, предусмотренными Гильбертом, а финитное доказательство непротиворечивости арифметики невозможно[6]. Это выступление не было заявлено заранее и произвело ошеломляющий эффект, Гёдель сразу стал всемирной знаменитостью, а программа Гильберта по формализации основ математики потребовала срочного пересмотра. 23 октября 1930 года результаты Гёделя были представлены Венской академии наук Хансом Ханом. Статья с обеими теоремами («О принципиально неразрешимых положениях в системе Principia Mathematica и родственных ей системах») была опубликована в научном ежемесячнике Monatshefte für Mathematik und Physik в 1931 году. Хотя доказательство второй теоремы Гёдель дал только в виде идеи, его результат был настолько ясен и неоспорим, что не вызвал сомнений ни у кого. Гильберт сразу признал ценность открытий Гёделя. Первые полные доказательства обеих теорем были опубликованы в книге Гильберта и Бернайса «Основания математики» в 1938 году. В предисловии ко второму тому авторы признали, что для достижения поставленной цели финитных методов недостаточно, и добавили в число логических средств трансфинитную индукцию. В 1936 году Герхард Генцен сумел доказать[англ.] непротиворечивость аксиом арифметики первого порядка, однако логическая полнота так и осталась недостижимой[6]. Теорема Гёделя о неполнотеВ первоначальной формеВ своей формулировке теоремы о неполноте Гёдель использовал понятие ω-непротиворечивой формальной системы — более сильное условие, чем просто непротиворечивость. Формальная система называется ω-непротиворечивой, если для всякой формулы A(x) этой системы невозможно одновременно вывести формулы А(0), А(1), А(2), … и ∃x ¬A(x) (другими словами, из того, что для каждого натурального числа n выводима формула A(n), следует невыводимость формулы ∃x ¬A(x)). Легко показать, что ω-непротиворечивость влечёт простую непротиворечивость (то есть любая ω-непротиворечивая формальная система непротиворечива)[7]. В процессе доказательства теоремы строится такая формула A арифметической формальной системы S, что[7]:
Формулу A иногда называют гёделевой неразрешимой формулой[8]. Интерпретация неразрешимой формулыВ стандартной интерпретации[~ 3] формула A означает «не существует вывода формулы A», то есть утверждает свою собственную невыводимость в S. Следовательно, по теореме Гёделя, если только система S непротиворечива, то эта формула и в самом деле невыводима в S и потому истинна в стандартной интерпретации. Таким образом, для натуральных чисел формула A верна, но в S невыводима[9]. В форме РоссераВ процессе доказательства теоремы строится такая формула B арифметической формальной системы S, что[10]:
Формулу B иногда называют россеровой неразрешимой формулой[11]. Эта формула немного сложнее гёделевой. Интерпретация неразрешимой формулыВ стандартной интерпретации[~ 3] формула B означает «если существует вывод формулы B, то существует вывод формулы ¬B». Согласно же теореме Гёделя в форме Россера, если формальная система S непротиворечива, то формула B в ней невыводима; поэтому, если система S непротиворечива, то формула B верна в стандартной интерпретации[12]. Обобщённые формулировкиДоказательство теоремы Гёделя обычно проводят для конкретной формальной системы (не обязательно одной и той же), соответственно утверждение теоремы оказывается доказанным только для одной этой системы. Исследование достаточных условий, которым должна удовлетворять формальная система для того, чтобы можно было провести доказательство её неполноты, приводит к обобщениям теоремы на широкий класс формальных систем. Пример обобщённой формулировки[13]:
В частности, теорема Гёделя справедлива для каждого непротиворечивого конечно аксиоматизируемого расширения арифметической формальной системы S. Полиномиальная формаПосле того как Юрий Матиясевич доказал диофантовость любого эффективно перечислимого множества, и были найдены примеры универсальных диофантовых уравнений, появилась возможность сформулировать теорему о неполноте в полиномиальной (или диофантовой) форме[14][15][16][17]:
Степень данного уравнения может быть понижена до 4 ценой увеличения количества переменных. Набросок доказательстваВ своей статье Гёдель даёт набросок основных идей доказательства[18], который приведён ниже с незначительными изменениями. Каждому примитивному символу, выражению и последовательности выражений некоторой формальной системы[~ 4] S поставим в соответствие определённое натуральное число[~ 5]. Математические понятия и утверждения таким образом становятся понятиями и утверждениями о натуральных числах, и, следовательно, сами могут быть выражены в символизме системы S. Можно показать, в частности, что понятия «формула», «вывод», «выводимая формула» определимы внутри системы S, то есть можно восстановить, например, формулу F(v) в S с одной свободной натурально-числовой переменной v такую, что F(v), в интуитивной интерпретации, означает: v — выводимая формула. Теперь построим неразрешимое предложение системы S, то есть предложение A, для которого ни A, ни не-A невыводимы, следующим образом: Формулу в S с точно одной свободной натурально-числовой переменной назовём класс-выражением. Упорядочим класс-выражения в последовательность каким-либо образом, обозначим n-е через R(n), и заметим, что понятие «класс-выражение», также как и отношение упорядочения R можно определить в системе S. Пусть α — произвольное класс-выражение; через [α;n] обозначим формулу, которая образуется из класс-выражения α заменой свободной переменной на символ натурального числа n. Тернарное отношение x = [y;z] тоже оказывается определимым в S. Теперь определим класс K натуральных чисел следующим образом:
(где Bew x означает: x — выводимая формула[~ 6]). Так как все определяющие понятия из этого определения можно выразить в S, то это же верно и для понятия K, которое из них построено, то есть имеется такое класс-выражение C, что формула [C;n], интуитивно интерпретируемая, обозначает, что натуральное число n принадлежит K. Как класс-выражение, C идентично некоторому определённому R(q) в нашей нумерации, то есть C = R(q) выполняется для некоторого определённого натурального числа q. Теперь покажем, что предложение [R(q);q] неразрешимо в S. Так, если предложение [R(q);q] предполагается выводимым, тогда оно оказывается истинным, то есть, в соответствии со сказанным выше, q будет принадлежать K, то есть, в соответствии с (*), будет выполнено ¬Bew[R(q);q], что противоречит нашему предположению. С другой стороны, если предположить выводимым отрицание [R(q);q], то будет иметь место ¬q∈K, то есть Bew[R(q);q] будет истинным. Следовательно, [R(q);q] вместе со своим отрицанием будет выводимо, что снова невозможно. Связь с парадоксамиВ стандартной интерпретации[~ 3] гёделева неразрешимая формула A означает «не существует вывода формулы A», то есть утверждает свою собственную невыводимость в системе S. Таким образом, A является аналогом парадокса лжеца. Рассуждения Гёделя в целом очень похожи на парадокс Ришара. Более того, для доказательства существования невыводимых утверждений может быть использован любой семантический парадокс[19]. Выражаемое формулой A утверждение не содержит порочного круга, поскольку изначально утверждается только, что некоторая конкретная формула, явную запись которой получить несложно (хоть и громоздко), недоказуема. «Только впоследствии (и, так сказать, по воле случая) оказывается, что эта формула в точности та, которой выражено само это утверждение»[19]. Вторая теорема ГёделяВ формальной арифметике S можно построить такую формулу, которая в стандартной интерпретации[~ 3] является истинной в том и только в том случае, когда теория S непротиворечива. Для этой формулы справедливо утверждение второй теоремы Гёделя:
Иными словами, непротиворечивость формальной арифметики не может быть доказана средствами этой теории. Однако, могут существовать доказательства непротиворечивости формальной арифметики, использующие средства, невыразимые в ней. Набросок доказательстваСначала строится формула Con, содержательно выражающая невозможность вывода в теории S какой-либо формулы вместе с её отрицанием. Тогда утверждение первой теоремы Гёделя выражается формулой Con ⊃ G, где G — Гёделева неразрешимая формула. Все рассуждения для доказательства первой теоремы могут быть выражены и проведены средствами S, то есть в S выводима формула Con ⊃ G. Отсюда, если в S выводима Con, то в ней выводима и G. Однако, согласно первой теореме Гёделя, если S непротиворечива, то G в ней невыводима. Следовательно, если S непротиворечива, то в ней невыводима и формула Con. Историческое влияниеСпециалисты дают самые разные, иногда даже полярные оценки исторической значимости теорем Гёделя. Часть учёных считает, что эти теоремы «перевернули» основания математики или даже всю теорию познания, и значение гениального открытия Гёделя будет постепенно открываться ещё долгое время[20]. Другие же (например, Бертран Рассел) призывают не преувеличивать, поскольку теоремы опираются на финитный формализм Гильберта[21][22].
Рассмотрим, например, следующее доказательство непротиворечивости арифметики[24].
С точки зрения повседневной человеческой логики, это доказательство приемлемо и убедительно. Но оно не может быть записано по правилам теории доказательств Гильберта, поскольку в этих правилах семантика заменена на синтаксис, а истинность — на «выводимость»[24]. В любом случае теоремы Гёделя подняли философию математики на новый уровень. См. такжеПримечанияКомментарии
Источники
Литература
Ссылки
Библиография — статьи Гёделя
|
Portal di Ensiklopedia Dunia