Теория представлений группы ГалилеяТеория представлений группы Галилея — в нерелятивистской квантовой механике раскрывает глубокую роль массы и спина в свойствах группы симметрий пространства-времени. В релятивистской механике аналогичную роль играет классификация Вигнера. ОпределениеВ четырёхмерном пространстве-времени 3 + 1 (и, при очевидном обобщении, в пространстве-времени произвольной размерности n + 1) представление группы Галилея является представлением подгруппы аффинной группы (на пространстве-времени t, x, y, z), линейная часть которой оставляет инвариантной как метрику (инвариантность временных интервалов относительно преобразований Галилея) так и (независимо) дуальную метрику (инвариантность пространственных интервалов относительно преобразований Галилея). Проективные представленияВ этой статье рассматриваются проективные представления этой группы, которые эквивалентны унитарным представлениям[англ.] нетривиального центрального расширения универсальной покрывающей группы группы Галилея одномерной группой Ли R (см. статью Галилеева группа для центрального расширения[англ.] ее алгебры Ли). Для их изучения используется метод индуцированных представлений[англ.]. Здесь рассматривается (центрально расширенная, Баргман) алгебра Ли, потому что ее проще анализировать, и мы всегда можем распространить результаты на полную группу Ли при помощи теоремы Фробениуса[англ.]. Здесь: E — генератор временных перемещений (гамильтониан), Pi — это генератор перемещений (оператор импульса), Ci — генератор галилеевых бустов, а Lij — генератор вращений (оператор углового момента). Центральный заряд[англ.] M является инвариантом Казимира. Инвариант массовой поверхности является дополнительным инвариантом Казимира. В случае четырёхмерного пространства-времени 3 + 1 третьим инвариантом Казимира является W2, где до некоторой степени аналогичный псевдовектору Паули–Любанского[англ.] релятивистской механики. В более общем случае n-мерного пространства-времени n + 1 инварианты будут зависеть от и а также от вышеуказанного инварианта массовой оболочки и центрального заряда. Используя лемму Шура, в неприводимом унитарном представлении, можно показать, что все эти инварианты Казимира тождественно кратны. Назовем коэффициенты кратности m и mE0 и (в случае четырёхмерного пространства-времени 3 + 1) w, соответственно. Вспоминая, что мы рассматриваем здесь унитарные представления, мы видим, что эти собственные значения должны быть вещественными числами. Классификация по массеРассмотрим случаи m > 0, m = 0 и m < 0 (последний случай похож на первый). В случае четырёхмерного пространства-времени 3 + 1 когда инвариант в m > 0, для третьего инварианта мы можем написать, w = ms, где s представляет собой спин или внутренний угловой импульс. В более общем случае n-мерного пространства-времени n + 1 генераторы L и C будут связаны, соответственно, с общим моментом импульса и моментом центра масс, как С чисто теоретической точки зрения нужно было бы изучить все представления; но в этой статье нас интересуют только приложения к квантовой механике. Там E представляет энергию, которая должна быть ограничена снизу из соображений термодинамической стабильности. Рассмотрим сначала случай, когда m не равно нулю. В пространстве (E, ) рассмотрим гиперповерхность, задаваемую уравнением мы видим, что галилеевы бусты действуют транзитивно на этой гиперповерхности. Фактически, рассматривая энергию E как гамильтониан, дифференцируя по P и применяя уравнения Гамильтона, мы получаем соотношение между массой и скоростью . Гиперповерхность параметризуется этой скоростью In . Рассмотрим стабилизатор точки на орбите (E0, 0), где скорость равна 0. Из-за транзитивности мы знаем, что унитарное неприводимое представление содержит нетривиальное линейное подпространство с этими собственными значениями энергии-импульса. (Это подпространство существует только во вложенном гильбертовом пространстве[англ.], потому что спектр импульса непрерывен.) Подпространство охватывает E, , M и Lij. Мы уже знаем, как подпространство неприводимых представлений преобразуется при всех операторах, кроме углового момента. Обратите внимание, что подгруппа вращения — это Spin(3). Мы должны рассматривать её двойную накрывающую группу[англ.], потому что мы рассматриваем проективные представления. Она называется малой группой, по имени, данному Юджином Вигнером. Его метод индуцированных представлений[англ.] указывает, что неприводимое представление задается прямой суммой всех волокон в векторном расслоении над гиперповерхностью mE = mE0 + P2/2 волокна которой представляют собой унитарное неприводимое представление Spin(3). Spin(3) — это не что иное, как SU(2). (См. теорию представлений SU(2)[англ.], где показано, что унитарные неприводимые представления SU(2) различаются неотрицательным рациональным числом s, кратным половине. По историческим причинам это число было названо спином.)
Случай, когда инвариант отрицателен, требует дополнительного комментария. Это соответствует классу представления для m = 0 и ненулевого . Расширяя классификацию тардиона, люксона,тахиона от теории представлений группы Пуанкаре до аналогичной классификации, здесь можно назвать эти состояния синхронами. Они представляют собой мгновенную передачу ненулевого импульса на (возможно, большое) расстояние. С ними связан, по вышесказанному, «временной» оператор который может быть идентифицирован со временем передачи. Эти состояния, естественно, интерпретируются как носители сил мгновенного действия на расстоянии. В 3 + 1 — мерной группе Галилея генератор буста может быть разложен на с играющим роль, аналогичную спиральности. См. также
Ссылки
|
Portal di Ensiklopedia Dunia