Тестовые функции для оптимизации В прикладной математике, тестовые функции , известные как искусственные ландшафты , являются полезными для оценки характеристик алгоритмов оптимизации, таких как:
Скорость сходимости.
Точность.
Робастность .
Общая производительность.
В статье представлены некоторые тестовые функции с целью дать представление о различных ситуациях, с которыми приходится сталкиваться при преодолении подобных проблем.
В статье представлены общая формула уравнения, участок целевой функции, границы переменных и координаты глобального минимума.
Тестовые функции для одной цели оптимизации
Название
Рисунок
Формула
Глобальный минимум
Метод поиска
Функция Растригина
f
(
x
)
=
A
n
+
∑
i
=
1
n
[
x
i
2
−
A
cos
(
2
π
x
i
)
]
{\displaystyle f(\mathbf {x} )=An+\sum _{i=1}^{n}\left[x_{i}^{2}-A\cos(2\pi x_{i})\right]}
where:
A
=
10
{\displaystyle {\text{where: }}A=10}
f
(
0
,
…
,
0
)
=
0
{\displaystyle f(0,\dots ,0)=0}
−
5.12
≤
x
i
≤
5.12
{\displaystyle -5.12\leq x_{i}\leq 5.12}
Функция Экли [англ.]
f
(
x
,
y
)
=
−
20
exp
[
−
0.2
0.5
(
x
2
+
y
2
)
]
{\displaystyle f(x,y)=-20\exp \left[-0.2{\sqrt {0.5\left(x^{2}+y^{2}\right)}}\right]}
−
exp
[
0.5
(
cos
(
2
π
x
)
+
cos
(
2
π
y
)
)
]
+
e
+
20
{\displaystyle -\exp \left[0.5\left(\cos(2\pi x)+\cos(2\pi y)\right)\right]+e+20}
f
(
0
,
0
)
=
0
{\displaystyle f(0,0)=0}
−
5
≤
x
,
y
≤
5
{\displaystyle -5\leq x,y\leq 5}
Функция сферы
f
(
x
)
=
∑
i
=
1
n
x
i
2
{\displaystyle f({\boldsymbol {x}})=\sum _{i=1}^{n}x_{i}^{2}}
f
(
x
1
,
…
,
x
n
)
=
f
(
0
,
…
,
0
)
=
0
{\displaystyle f(x_{1},\dots ,x_{n})=f(0,\dots ,0)=0}
−
∞
≤
x
i
≤
∞
{\displaystyle -\infty \leq x_{i}\leq \infty }
,
1
≤
i
≤
n
{\displaystyle 1\leq i\leq n}
Функция Розенброка
f
(
x
)
=
∑
i
=
1
n
−
1
[
100
(
x
i
+
1
−
x
i
2
)
2
+
(
x
i
−
1
)
2
]
{\displaystyle f({\boldsymbol {x}})=\sum _{i=1}^{n-1}\left[100\left(x_{i+1}-x_{i}^{2}\right)^{2}+\left(x_{i}-1\right)^{2}\right]}
Min
=
{
n
=
2
→
f
(
1
,
1
)
=
0
,
n
=
3
→
f
(
1
,
1
,
1
)
=
0
,
n
>
3
→
f
(
1
,
…
,
1
⏟
n
times
)
=
0
{\displaystyle {\text{Min}}={\begin{cases}n=2&\rightarrow \quad f(1,1)=0,\\n=3&\rightarrow \quad f(1,1,1)=0,\\n>3&\rightarrow \quad f(\underbrace {1,\dots ,1} _{n{\text{ times}}})=0\\\end{cases}}}
−
∞
≤
x
i
≤
∞
{\displaystyle -\infty \leq x_{i}\leq \infty }
,
1
≤
i
≤
n
{\displaystyle 1\leq i\leq n}
Функция Била
f
(
x
,
y
)
=
(
1.5
−
x
+
x
y
)
2
+
(
2.25
−
x
+
x
y
2
)
2
{\displaystyle f(x,y)=\left(1.5-x+xy\right)^{2}+\left(2.25-x+xy^{2}\right)^{2}}
+
(
2.625
−
x
+
x
y
3
)
2
{\displaystyle +\left(2.625-x+xy^{3}\right)^{2}}
f
(
3
,
0.5
)
=
0
{\displaystyle f(3,0.5)=0}
−
4.5
≤
x
,
y
≤
4.5
{\displaystyle -4.5\leq x,y\leq 4.5}
Функция Гольдшейна-Прайса
f
(
x
,
y
)
=
[
1
+
(
x
+
y
+
1
)
2
(
19
−
14
x
+
3
x
2
−
14
y
+
6
x
y
+
3
y
2
)
]
{\displaystyle f(x,y)=\left[1+\left(x+y+1\right)^{2}\left(19-14x+3x^{2}-14y+6xy+3y^{2}\right)\right]}
[
30
+
(
2
x
−
3
y
)
2
(
18
−
32
x
+
12
x
2
+
48
y
−
36
x
y
+
27
y
2
)
]
{\displaystyle \left[30+\left(2x-3y\right)^{2}\left(18-32x+12x^{2}+48y-36xy+27y^{2}\right)\right]}
f
(
0
,
−
1
)
=
3
{\displaystyle f(0,-1)=3}
−
2
≤
x
,
y
≤
2
{\displaystyle -2\leq x,y\leq 2}
Функция Бута
f
(
x
,
y
)
=
(
x
+
2
y
−
7
)
2
+
(
2
x
+
y
−
5
)
2
{\displaystyle f(x,y)=\left(x+2y-7\right)^{2}+\left(2x+y-5\right)^{2}}
f
(
1
,
3
)
=
0
{\displaystyle f(1,3)=0}
−
10
≤
x
,
y
≤
10
{\displaystyle -10\leq x,y\leq 10}
Функция Букина N 6
f
(
x
,
y
)
=
100
|
y
−
0.01
x
2
|
+
0.01
|
x
+
10
|
.
{\displaystyle f(x,y)=100{\sqrt {\left|y-0.01x^{2}\right|}}+0.01\left|x+10\right|.\quad }
f
(
−
10
,
1
)
=
0
{\displaystyle f(-10,1)=0}
−
15
≤
x
≤
−
5
{\displaystyle -15\leq x\leq -5}
,
−
3
≤
y
≤
3
{\displaystyle -3\leq y\leq 3}
Функция Матьяса
f
(
x
,
y
)
=
0.26
(
x
2
+
y
2
)
−
0.48
x
y
{\displaystyle f(x,y)=0.26\left(x^{2}+y^{2}\right)-0.48xy}
f
(
0
,
0
)
=
0
{\displaystyle f(0,0)=0}
−
10
≤
x
,
y
≤
10
{\displaystyle -10\leq x,y\leq 10}
Функция Леви N 13
f
(
x
,
y
)
=
sin
2
3
π
x
+
(
x
−
1
)
2
(
1
+
sin
2
3
π
y
)
{\displaystyle f(x,y)=\sin ^{2}3\pi x+\left(x-1\right)^{2}\left(1+\sin ^{2}3\pi y\right)}
+
(
y
−
1
)
2
(
1
+
sin
2
2
π
y
)
{\displaystyle +\left(y-1\right)^{2}\left(1+\sin ^{2}2\pi y\right)}
f
(
1
,
1
)
=
0
{\displaystyle f(1,1)=0}
−
10
≤
x
,
y
≤
10
{\displaystyle -10\leq x,y\leq 10}
Функция Химмельблау
f
(
x
,
y
)
=
(
x
2
+
y
−
11
)
2
+
(
x
+
y
2
−
7
)
2
.
{\displaystyle f(x,y)=(x^{2}+y-11)^{2}+(x+y^{2}-7)^{2}.\quad }
Min
=
{
f
(
3.0
,
2.0
)
=
0.0
f
(
−
2.805118
,
3.131312
)
=
0.0
f
(
−
3.779310
,
−
3.283186
)
=
0.0
f
(
3.584428
,
−
1.848126
)
=
0.0
{\displaystyle {\text{Min}}={\begin{cases}f\left(3.0,2.0\right)&=0.0\\f\left(-2.805118,3.131312\right)&=0.0\\f\left(-3.779310,-3.283186\right)&=0.0\\f\left(3.584428,-1.848126\right)&=0.0\\\end{cases}}}
−
5
≤
x
,
y
≤
5
{\displaystyle -5\leq x,y\leq 5}
Функция трехгорбого верблюда
f
(
x
,
y
)
=
2
x
2
−
1.05
x
4
+
x
6
6
+
x
y
+
y
2
{\displaystyle f(x,y)=2x^{2}-1.05x^{4}+{\frac {x^{6}}{6}}+xy+y^{2}}
f
(
0
,
0
)
=
0
{\displaystyle f(0,0)=0}
−
5
≤
x
,
y
≤
5
{\displaystyle -5\leq x,y\leq 5}
Функция Изома
f
(
x
,
y
)
=
−
cos
(
x
)
cos
(
y
)
exp
(
−
(
(
x
−
π
)
2
+
(
y
−
π
)
2
)
)
{\displaystyle f(x,y)=-\cos \left(x\right)\cos \left(y\right)\exp \left(-\left(\left(x-\pi \right)^{2}+\left(y-\pi \right)^{2}\right)\right)}
f
(
π
,
π
)
=
−
1
{\displaystyle f(\pi ,\pi )=-1}
−
100
≤
x
,
y
≤
100
{\displaystyle -100\leq x,y\leq 100}
Функция "крест на подносе"
(Cross-in-tray function)
f
(
x
,
y
)
=
−
0.0001
[
|
sin
x
sin
y
exp
(
|
100
−
x
2
+
y
2
π
|
)
|
+
1
]
0.1
{\displaystyle f(x,y)=-0.0001\left[\left|\sin x\sin y\exp \left(\left|100-{\frac {\sqrt {x^{2}+y^{2}}}{\pi }}\right|\right)\right|+1\right]^{0.1}}
Min
=
{
f
(
1.34941
,
−
1.34941
)
=
−
2.06261
f
(
1.34941
,
1.34941
)
=
−
2.06261
f
(
−
1.34941
,
1.34941
)
=
−
2.06261
f
(
−
1.34941
,
−
1.34941
)
=
−
2.06261
{\displaystyle {\text{Min}}={\begin{cases}f\left(1.34941,-1.34941\right)&=-2.06261\\f\left(1.34941,1.34941\right)&=-2.06261\\f\left(-1.34941,1.34941\right)&=-2.06261\\f\left(-1.34941,-1.34941\right)&=-2.06261\\\end{cases}}}
−
10
≤
x
,
y
≤
10
{\displaystyle -10\leq x,y\leq 10}
Функция "подставка для яиц"
(Eggholder function)
f
(
x
,
y
)
=
−
(
y
+
47
)
sin
|
x
2
+
(
y
+
47
)
|
−
x
sin
|
x
−
(
y
+
47
)
|
{\displaystyle f(x,y)=-\left(y+47\right)\sin {\sqrt {\left|{\frac {x}{2}}+\left(y+47\right)\right|}}-x\sin {\sqrt {\left|x-\left(y+47\right)\right|}}}
f
(
512
,
404.2319
)
=
−
959.6407
{\displaystyle f(512,404.2319)=-959.6407}
−
512
≤
x
,
y
≤
512
{\displaystyle -512\leq x,y\leq 512}
Табличная функция Хольдера
f
(
x
,
y
)
=
−
|
sin
x
cos
y
exp
(
|
1
−
x
2
+
y
2
π
|
)
|
{\displaystyle f(x,y)=-\left|\sin x\cos y\exp \left(\left|1-{\frac {\sqrt {x^{2}+y^{2}}}{\pi }}\right|\right)\right|}
Min
=
{
f
(
8.05502
,
9.66459
)
=
−
19.2085
f
(
−
8.05502
,
9.66459
)
=
−
19.2085
f
(
8.05502
,
−
9.66459
)
=
−
19.2085
f
(
−
8.05502
,
−
9.66459
)
=
−
19.2085
{\displaystyle {\text{Min}}={\begin{cases}f\left(8.05502,9.66459\right)&=-19.2085\\f\left(-8.05502,9.66459\right)&=-19.2085\\f\left(8.05502,-9.66459\right)&=-19.2085\\f\left(-8.05502,-9.66459\right)&=-19.2085\end{cases}}}
−
10
≤
x
,
y
≤
10
{\displaystyle -10\leq x,y\leq 10}
Функция МакКормика
f
(
x
,
y
)
=
sin
(
x
+
y
)
+
(
x
−
y
)
2
−
1.5
x
+
2.5
y
+
1
{\displaystyle f(x,y)=\sin \left(x+y\right)+\left(x-y\right)^{2}-1.5x+2.5y+1}
f
(
−
0.54719
,
−
1.54719
)
=
−
1.9133
{\displaystyle f(-0.54719,-1.54719)=-1.9133}
−
1.5
≤
x
≤
4
{\displaystyle -1.5\leq x\leq 4}
,
−
3
≤
y
≤
4
{\displaystyle -3\leq y\leq 4}
Функция Шаффера N2
f
(
x
,
y
)
=
0.5
+
sin
2
(
x
2
−
y
2
)
−
0.5
[
1
+
0.001
(
x
2
+
y
2
)
]
2
{\displaystyle f(x,y)=0.5+{\frac {\sin ^{2}\left(x^{2}-y^{2}\right)-0.5}{\left[1+0.001\left(x^{2}+y^{2}\right)\right]^{2}}}}
f
(
0
,
0
)
=
0
{\displaystyle f(0,0)=0}
−
100
≤
x
,
y
≤
100
{\displaystyle -100\leq x,y\leq 100}
Функция Шаффера N4
f
(
x
,
y
)
=
0.5
+
cos
2
[
sin
(
|
x
2
−
y
2
|
)
]
−
0.5
[
1
+
0.001
(
x
2
+
y
2
)
]
2
{\displaystyle f(x,y)=0.5+{\frac {\cos ^{2}\left[\sin \left(\left|x^{2}-y^{2}\right|\right)\right]-0.5}{\left[1+0.001\left(x^{2}+y^{2}\right)\right]^{2}}}}
f
(
0
,
1.25313
)
=
0.292579
{\displaystyle f(0,1.25313)=0.292579}
−
100
≤
x
,
y
≤
100
{\displaystyle -100\leq x,y\leq 100}
Функция Стыбинского-Танга
f
(
x
)
=
∑
i
=
1
n
x
i
4
−
16
x
i
2
+
5
x
i
2
{\displaystyle f({\boldsymbol {x}})={\frac {\sum _{i=1}^{n}x_{i}^{4}-16x_{i}^{2}+5x_{i}}{2}}}
−
39.16617
n
<
f
(
−
2.903534
,
…
,
−
2.903534
⏟
n
times
)
<
−
39.16616
n
{\displaystyle -39.16617n<f(\underbrace {-2.903534,\ldots ,-2.903534} _{n{\text{ times}}})<-39.16616n}
−
5
≤
x
i
≤
5
{\displaystyle -5\leq x_{i}\leq 5}
,
1
≤
i
≤
n
{\displaystyle 1\leq i\leq n}
..
Тестовые функции для условной оптимизации
Название
Рисунок
Формула
Глобальный минимум
Метод поиска
функция Розенброка, ограничена кубической и прямой[ 1]
f
(
x
,
y
)
=
(
1
−
x
)
2
+
100
(
y
−
x
2
)
2
{\displaystyle f(x,y)=(1-x)^{2}+100(y-x^{2})^{2}}
,
subjected to:
(
x
−
1
)
3
−
y
+
1
<
0
and
x
+
y
−
2
<
0
{\displaystyle (x-1)^{3}-y+1<0{\text{ and }}x+y-2<0}
f
(
1.0
,
1.0
)
=
0
{\displaystyle f(1.0,1.0)=0}
−
1.5
≤
x
≤
1.5
{\displaystyle -1.5\leq x\leq 1.5}
,
−
0.5
≤
y
≤
2.5
{\displaystyle -0.5\leq y\leq 2.5}
Функция Розенброка, ограниченная диском[ 2]
f
(
x
,
y
)
=
(
1
−
x
)
2
+
100
(
y
−
x
2
)
2
{\displaystyle f(x,y)=(1-x)^{2}+100(y-x^{2})^{2}}
,
subjected to:
x
2
+
y
2
<
2
{\displaystyle x^{2}+y^{2}<2}
f
(
1.0
,
1.0
)
=
0
{\displaystyle f(1.0,1.0)=0}
−
1.5
≤
x
≤
1.5
{\displaystyle -1.5\leq x\leq 1.5}
,
−
1.5
≤
y
≤
1.5
{\displaystyle -1.5\leq y\leq 1.5}
Ограниченная функция Мишры-Бёрда[ 3] [ 4]
f
(
x
,
y
)
=
sin
(
y
)
e
[
(
1
−
cos
x
)
2
]
+
cos
(
x
)
e
[
(
1
−
sin
y
)
2
]
+
(
x
−
y
)
2
{\displaystyle f(x,y)=\sin(y)e^{\left[(1-\cos x)^{2}\right]}+\cos(x)e^{\left[(1-\sin y)^{2}\right]}+(x-y)^{2}}
,
subjected to:
(
x
+
5
)
2
+
(
y
+
5
)
2
<
25
{\displaystyle (x+5)^{2}+(y+5)^{2}<25}
f
(
−
3.1302468
,
−
1.5821422
)
=
−
106.7645367
{\displaystyle f(-3.1302468,-1.5821422)=-106.7645367}
−
10
≤
x
≤
0
{\displaystyle -10\leq x\leq 0}
,
−
6.5
≤
y
≤
0
{\displaystyle -6.5\leq y\leq 0}
Модифицированная функция Таусенда[ 5]
f
(
x
,
y
)
=
−
[
cos
(
(
x
−
0.1
)
y
)
]
2
−
x
sin
(
3
x
+
y
)
{\displaystyle f(x,y)=-[\cos((x-0.1)y)]^{2}-x\sin(3x+y)}
,
subjected to:
x
2
+
y
2
<
[
2
cos
t
−
1
2
cos
2
t
−
1
4
cos
3
t
−
1
8
cos
4
t
]
2
+
[
2
sin
t
]
2
{\displaystyle x^{2}+y^{2}<\left[2\cos t-{\frac {1}{2}}\cos 2t-{\frac {1}{4}}\cos 3t-{\frac {1}{8}}\cos 4t\right]^{2}+[2\sin t]^{2}}
where: t = Atan2(x,y)
f
(
2.0052938
,
1.1944509
)
=
−
2.0239884
{\displaystyle f(2.0052938,1.1944509)=-2.0239884}
−
2.25
≤
x
≤
2.5
{\displaystyle -2.25\leq x\leq 2.5}
,
−
2.5
≤
y
≤
1.75
{\displaystyle -2.5\leq y\leq 1.75}
Функция Симионеску[ 6]
f
(
x
,
y
)
=
0.1
x
y
{\displaystyle f(x,y)=0.1xy}
,
subjected to:
x
2
+
y
2
≤
[
r
T
+
r
S
cos
(
n
arctan
x
y
)
]
2
{\displaystyle x^{2}+y^{2}\leq \left[r_{T}+r_{S}\cos \left(n\arctan {\frac {x}{y}}\right)\right]^{2}}
where:
r
T
=
1
,
r
S
=
0.2
and
n
=
8
{\displaystyle {\text{where: }}r_{T}=1,r_{S}=0.2{\text{ and }}n=8}
f
(
±
0.85586214
,
∓
0.85586214
)
=
−
0.072625
{\displaystyle f(\pm 0.85586214,\mp 0.85586214)=-0.072625}
−
1.25
≤
x
,
y
≤
1.25
{\displaystyle -1.25\leq x,y\leq 1.25}
Тестовые функции для многокритериальной оптимизации
Название / Рисунок
Формула
Минимум
Область поиска
Функция Бина и Корна
Minimize
=
{
f
1
(
x
,
y
)
=
4
x
2
+
4
y
2
f
2
(
x
,
y
)
=
(
x
−
5
)
2
+
(
y
−
5
)
2
{\displaystyle {\text{Minimize}}={\begin{cases}f_{1}\left(x,y\right)&=4x^{2}+4y^{2}\\f_{2}\left(x,y\right)&=\left(x-5\right)^{2}+\left(y-5\right)^{2}\\\end{cases}}}
s.t.
=
{
g
1
(
x
,
y
)
=
(
x
−
5
)
2
+
y
2
≤
25
g
2
(
x
,
y
)
=
(
x
−
8
)
2
+
(
y
+
3
)
2
≥
7.7
{\displaystyle {\text{s.t.}}={\begin{cases}g_{1}\left(x,y\right)&=\left(x-5\right)^{2}+y^{2}\leq 25\\g_{2}\left(x,y\right)&=\left(x-8\right)^{2}+\left(y+3\right)^{2}\geq 7.7\\\end{cases}}}
0
≤
x
≤
5
{\displaystyle 0\leq x\leq 5}
,
0
≤
y
≤
3
{\displaystyle 0\leq y\leq 3}
Chakong and Haimes function
Minimize
=
{
f
1
(
x
,
y
)
=
2
+
(
x
−
2
)
2
+
(
y
−
1
)
2
f
2
(
x
,
y
)
=
9
x
−
(
y
−
1
)
2
{\displaystyle {\text{Minimize}}={\begin{cases}f_{1}\left(x,y\right)&=2+\left(x-2\right)^{2}+\left(y-1\right)^{2}\\f_{2}\left(x,y\right)&=9x-\left(y-1\right)^{2}\\\end{cases}}}
s.t.
=
{
g
1
(
x
,
y
)
=
x
2
+
y
2
≤
225
g
2
(
x
,
y
)
=
x
−
3
y
+
10
≤
0
{\displaystyle {\text{s.t.}}={\begin{cases}g_{1}\left(x,y\right)&=x^{2}+y^{2}\leq 225\\g_{2}\left(x,y\right)&=x-3y+10\leq 0\\\end{cases}}}
−
20
≤
x
,
y
≤
20
{\displaystyle -20\leq x,y\leq 20}
Функция Фонсеки и Флеминга
Minimize
=
{
f
1
(
x
)
=
1
−
exp
(
−
∑
i
=
1
n
(
x
i
−
1
n
)
2
)
f
2
(
x
)
=
1
−
exp
(
−
∑
i
=
1
n
(
x
i
+
1
n
)
2
)
{\displaystyle {\text{Minimize}}={\begin{cases}f_{1}\left({\boldsymbol {x}}\right)&=1-\exp \left(-\sum _{i=1}^{n}\left(x_{i}-{\frac {1}{\sqrt {n}}}\right)^{2}\right)\\f_{2}\left({\boldsymbol {x}}\right)&=1-\exp \left(-\sum _{i=1}^{n}\left(x_{i}+{\frac {1}{\sqrt {n}}}\right)^{2}\right)\\\end{cases}}}
−
4
≤
x
i
≤
4
{\displaystyle -4\leq x_{i}\leq 4}
,
1
≤
i
≤
n
{\displaystyle 1\leq i\leq n}
Test function 4
Minimize
=
{
f
1
(
x
,
y
)
=
x
2
−
y
f
2
(
x
,
y
)
=
−
0.5
x
−
y
−
1
{\displaystyle {\text{Minimize}}={\begin{cases}f_{1}\left(x,y\right)&=x^{2}-y\\f_{2}\left(x,y\right)&=-0.5x-y-1\\\end{cases}}}
s.t.
=
{
g
1
(
x
,
y
)
=
6.5
−
x
6
−
y
≥
0
g
2
(
x
,
y
)
=
7.5
−
0.5
x
−
y
≥
0
g
3
(
x
,
y
)
=
30
−
5
x
−
y
≥
0
{\displaystyle {\text{s.t.}}={\begin{cases}g_{1}\left(x,y\right)&=6.5-{\frac {x}{6}}-y\geq 0\\g_{2}\left(x,y\right)&=7.5-0.5x-y\geq 0\\g_{3}\left(x,y\right)&=30-5x-y\geq 0\\\end{cases}}}
−
7
≤
x
,
y
≤
4
{\displaystyle -7\leq x,y\leq 4}
Функция Курсаве
Minimize
=
{
f
1
(
x
)
=
∑
i
=
1
2
[
−
10
exp
(
−
0.2
x
i
2
+
x
i
+
1
2
)
]
f
2
(
x
)
=
∑
i
=
1
3
[
|
x
i
|
0.8
+
5
sin
(
x
i
3
)
]
{\displaystyle {\text{Minimize}}={\begin{cases}f_{1}\left({\boldsymbol {x}}\right)&=\sum _{i=1}^{2}\left[-10\exp \left(-0.2{\sqrt {x_{i}^{2}+x_{i+1}^{2}}}\right)\right]\\&\\f_{2}\left({\boldsymbol {x}}\right)&=\sum _{i=1}^{3}\left[\left|x_{i}\right|^{0.8}+5\sin \left(x_{i}^{3}\right)\right]\\\end{cases}}}
−
5
≤
x
i
≤
5
{\displaystyle -5\leq x_{i}\leq 5}
,
1
≤
i
≤
3
{\displaystyle 1\leq i\leq 3}
.
Schaffer function N. 1
Minimize
=
{
f
1
(
x
)
=
x
2
f
2
(
x
)
=
(
x
−
2
)
2
{\displaystyle {\text{Minimize}}={\begin{cases}f_{1}\left(x\right)&=x^{2}\\f_{2}\left(x\right)&=\left(x-2\right)^{2}\\\end{cases}}}
−
A
≤
x
≤
A
{\displaystyle -A\leq x\leq A}
. Values of
A
{\displaystyle A}
form
10
{\displaystyle 10}
to
10
5
{\displaystyle 10^{5}}
have been used successfully. Higher values of
A
{\displaystyle A}
increase the difficulty of the problem.
Schaffer function N. 2
Minimize
=
{
f
1
(
x
)
=
{
−
x
,
if
x
≤
1
x
−
2
,
if
1
<
x
≤
3
4
−
x
,
if
3
<
x
≤
4
x
−
4
,
if
x
>
4
f
2
(
x
)
=
(
x
−
5
)
2
{\displaystyle {\text{Minimize}}={\begin{cases}f_{1}\left(x\right)&={\begin{cases}-x,&{\text{if }}x\leq 1\\x-2,&{\text{if }}1<x\leq 3\\4-x,&{\text{if }}3<x\leq 4\\x-4,&{\text{if }}x>4\\\end{cases}}\\f_{2}\left(x\right)&=\left(x-5\right)^{2}\\\end{cases}}}
−
5
≤
x
≤
10
{\displaystyle -5\leq x\leq 10}
.
Объективная функция Полони2
Minimize
=
{
f
1
(
x
,
y
)
=
[
1
+
(
A
1
−
B
1
(
x
,
y
)
)
2
+
(
A
2
−
B
2
(
x
,
y
)
)
2
]
f
2
(
x
,
y
)
=
(
x
+
3
)
2
+
(
y
+
1
)
2
{\displaystyle {\text{Minimize}}={\begin{cases}f_{1}\left(x,y\right)&=\left[1+\left(A_{1}-B_{1}\left(x,y\right)\right)^{2}+\left(A_{2}-B_{2}\left(x,y\right)\right)^{2}\right]\\f_{2}\left(x,y\right)&=\left(x+3\right)^{2}+\left(y+1\right)^{2}\\\end{cases}}}
where
=
{
A
1
=
0.5
sin
(
1
)
−
2
cos
(
1
)
+
sin
(
2
)
−
1.5
cos
(
2
)
A
2
=
1.5
sin
(
1
)
−
cos
(
1
)
+
2
sin
(
2
)
−
0.5
cos
(
2
)
B
1
(
x
,
y
)
=
0.5
sin
(
x
)
−
2
cos
(
x
)
+
sin
(
y
)
−
1.5
cos
(
y
)
B
2
(
x
,
y
)
=
1.5
sin
(
x
)
−
cos
(
x
)
+
2
sin
(
y
)
−
0.5
cos
(
y
)
{\displaystyle {\text{where}}={\begin{cases}A_{1}&=0.5\sin \left(1\right)-2\cos \left(1\right)+\sin \left(2\right)-1.5\cos \left(2\right)\\A_{2}&=1.5\sin \left(1\right)-\cos \left(1\right)+2\sin \left(2\right)-0.5\cos \left(2\right)\\B_{1}\left(x,y\right)&=0.5\sin \left(x\right)-2\cos \left(x\right)+\sin \left(y\right)-1.5\cos \left(y\right)\\B_{2}\left(x,y\right)&=1.5\sin \left(x\right)-\cos \left(x\right)+2\sin \left(y\right)-0.5\cos \left(y\right)\end{cases}}}
−
π
≤
x
,
y
≤
π
{\displaystyle -\pi \leq x,y\leq \pi }
Функция Зистера-Дьеба-Тери N. 1
Minimize
=
{
f
1
(
x
)
=
x
1
f
2
(
x
)
=
g
(
x
)
h
(
f
1
(
x
)
,
g
(
x
)
)
g
(
x
)
=
1
+
9
29
∑
i
=
2
30
x
i
h
(
f
1
(
x
)
,
g
(
x
)
)
=
1
−
f
1
(
x
)
g
(
x
)
{\displaystyle {\text{Minimize}}={\begin{cases}f_{1}\left({\boldsymbol {x}}\right)&=x_{1}\\f_{2}\left({\boldsymbol {x}}\right)&=g\left({\boldsymbol {x}}\right)h\left(f_{1}\left({\boldsymbol {x}}\right),g\left({\boldsymbol {x}}\right)\right)\\g\left({\boldsymbol {x}}\right)&=1+{\frac {9}{29}}\sum _{i=2}^{30}x_{i}\\h\left(f_{1}\left({\boldsymbol {x}}\right),g\left({\boldsymbol {x}}\right)\right)&=1-{\sqrt {\frac {f_{1}\left({\boldsymbol {x}}\right)}{g\left({\boldsymbol {x}}\right)}}}\\\end{cases}}}
0
≤
x
i
≤
1
{\displaystyle 0\leq x_{i}\leq 1}
,
1
≤
i
≤
30
{\displaystyle 1\leq i\leq 30}
.
Функция Зистера-Дьеба-Тери N. 2
Minimize
=
{
f
1
(
x
)
=
x
1
f
2
(
x
)
=
g
(
x
)
h
(
f
1
(
x
)
,
g
(
x
)
)
g
(
x
)
=
1
+
9
29
∑
i
=
2
30
x
i
h
(
f
1
(
x
)
,
g
(
x
)
)
=
1
−
(
f
1
(
x
)
g
(
x
)
)
2
{\displaystyle {\text{Minimize}}={\begin{cases}f_{1}\left({\boldsymbol {x}}\right)&=x_{1}\\f_{2}\left({\boldsymbol {x}}\right)&=g\left({\boldsymbol {x}}\right)h\left(f_{1}\left({\boldsymbol {x}}\right),g\left({\boldsymbol {x}}\right)\right)\\g\left({\boldsymbol {x}}\right)&=1+{\frac {9}{29}}\sum _{i=2}^{30}x_{i}\\h\left(f_{1}\left({\boldsymbol {x}}\right),g\left({\boldsymbol {x}}\right)\right)&=1-\left({\frac {f_{1}\left({\boldsymbol {x}}\right)}{g\left({\boldsymbol {x}}\right)}}\right)^{2}\\\end{cases}}}
0
≤
x
i
≤
1
{\displaystyle 0\leq x_{i}\leq 1}
,
1
≤
i
≤
30
{\displaystyle 1\leq i\leq 30}
.
Функция Зистера-Дьеба-Териn N. 3
Minimize
=
{
f
1
(
x
)
=
x
1
f
2
(
x
)
=
g
(
x
)
h
(
f
1
(
x
)
,
g
(
x
)
)
g
(
x
)
=
1
+
9
29
∑
i
=
2
30
x
i
h
(
f
1
(
x
)
,
g
(
x
)
)
=
1
−
f
1
(
x
)
g
(
x
)
−
(
f
1
(
x
)
g
(
x
)
)
sin
(
10
π
f
1
(
x
)
)
{\displaystyle {\text{Minimize}}={\begin{cases}f_{1}\left({\boldsymbol {x}}\right)&=x_{1}\\f_{2}\left({\boldsymbol {x}}\right)&=g\left({\boldsymbol {x}}\right)h\left(f_{1}\left({\boldsymbol {x}}\right),g\left({\boldsymbol {x}}\right)\right)\\g\left({\boldsymbol {x}}\right)&=1+{\frac {9}{29}}\sum _{i=2}^{30}x_{i}\\h\left(f_{1}\left({\boldsymbol {x}}\right),g\left({\boldsymbol {x}}\right)\right)&=1-{\sqrt {\frac {f_{1}\left({\boldsymbol {x}}\right)}{g\left({\boldsymbol {x}}\right)}}}-\left({\frac {f_{1}\left({\boldsymbol {x}}\right)}{g\left({\boldsymbol {x}}\right)}}\right)\sin \left(10\pi f_{1}\left({\boldsymbol {x}}\right)\right)\end{cases}}}
0
≤
x
i
≤
1
{\displaystyle 0\leq x_{i}\leq 1}
,
1
≤
i
≤
30
{\displaystyle 1\leq i\leq 30}
.
Функция Зистера-Дьеба-ТериN. 4
Minimize
=
{
f
1
(
x
)
=
x
1
f
2
(
x
)
=
g
(
x
)
h
(
f
1
(
x
)
,
g
(
x
)
)
g
(
x
)
=
91
+
∑
i
=
2
10
(
x
i
2
−
10
cos
(
4
π
x
i
)
)
h
(
f
1
(
x
)
,
g
(
x
)
)
=
1
−
f
1
(
x
)
g
(
x
)
{\displaystyle {\text{Minimize}}={\begin{cases}f_{1}\left({\boldsymbol {x}}\right)&=x_{1}\\f_{2}\left({\boldsymbol {x}}\right)&=g\left({\boldsymbol {x}}\right)h\left(f_{1}\left({\boldsymbol {x}}\right),g\left({\boldsymbol {x}}\right)\right)\\g\left({\boldsymbol {x}}\right)&=91+\sum _{i=2}^{10}\left(x_{i}^{2}-10\cos \left(4\pi x_{i}\right)\right)\\h\left(f_{1}\left({\boldsymbol {x}}\right),g\left({\boldsymbol {x}}\right)\right)&=1-{\sqrt {\frac {f_{1}\left({\boldsymbol {x}}\right)}{g\left({\boldsymbol {x}}\right)}}}\end{cases}}}
0
≤
x
1
≤
1
{\displaystyle 0\leq x_{1}\leq 1}
,
−
5
≤
x
i
≤
5
{\displaystyle -5\leq x_{i}\leq 5}
,
2
≤
i
≤
10
{\displaystyle 2\leq i\leq 10}
Функция Зистера-Дьеба-Тери N. 6
Minimize
=
{
f
1
(
x
)
=
1
−
exp
(
−
4
x
1
)
sin
6
(
6
π
x
1
)
f
2
(
x
)
=
g
(
x
)
h
(
f
1
(
x
)
,
g
(
x
)
)
g
(
x
)
=
1
+
9
[
∑
i
=
2
10
x
i
9
]
0.25
h
(
f
1
(
x
)
,
g
(
x
)
)
=
1
−
(
f
1
(
x
)
g
(
x
)
)
2
{\displaystyle {\text{Minimize}}={\begin{cases}f_{1}\left({\boldsymbol {x}}\right)&=1-\exp \left(-4x_{1}\right)\sin ^{6}\left(6\pi x_{1}\right)\\f_{2}\left({\boldsymbol {x}}\right)&=g\left({\boldsymbol {x}}\right)h\left(f_{1}\left({\boldsymbol {x}}\right),g\left({\boldsymbol {x}}\right)\right)\\g\left({\boldsymbol {x}}\right)&=1+9\left[{\frac {\sum _{i=2}^{10}x_{i}}{9}}\right]^{0.25}\\h\left(f_{1}\left({\boldsymbol {x}}\right),g\left({\boldsymbol {x}}\right)\right)&=1-\left({\frac {f_{1}\left({\boldsymbol {x}}\right)}{g\left({\boldsymbol {x}}\right)}}\right)^{2}\\\end{cases}}}
0
≤
x
i
≤
1
{\displaystyle 0\leq x_{i}\leq 1}
,
1
≤
i
≤
10
{\displaystyle 1\leq i\leq 10}
.
Функция Виннета
Minimize
=
{
f
1
(
x
,
y
)
=
0.5
(
x
2
+
y
2
)
+
sin
(
x
2
+
y
2
)
f
2
(
x
,
y
)
=
(
3
x
−
2
y
+
4
)
2
8
+
(
x
−
y
+
1
)
2
27
+
15
f
3
(
x
,
y
)
=
1
x
2
+
y
2
+
1
−
1.1
exp
(
−
(
x
2
+
y
2
)
)
{\displaystyle {\text{Minimize}}={\begin{cases}f_{1}\left(x,y\right)&=0.5\left(x^{2}+y^{2}\right)+\sin \left(x^{2}+y^{2}\right)\\f_{2}\left(x,y\right)&={\frac {\left(3x-2y+4\right)^{2}}{8}}+{\frac {\left(x-y+1\right)^{2}}{27}}+15\\f_{3}\left(x,y\right)&={\frac {1}{x^{2}+y^{2}+1}}-1.1\exp \left(-\left(x^{2}+y^{2}\right)\right)\\\end{cases}}}
−
3
≤
x
,
y
≤
3
{\displaystyle -3\leq x,y\leq 3}
.
Функция Осызки и Кунду
F
1
(
x
)
=
−
25
(
x
1
−
2
)
2
−
(
x
2
−
2
)
2
{\displaystyle F_{1}(x)=-25\left(x_{1}-2\right)^{2}-\left(x_{2}-2\right)^{2}}
−
(
x
3
−
1
)
2
−
(
x
4
−
4
)
2
−
(
x
5
−
1
)
2
{\displaystyle -\left(x_{3}-1\right)^{2}-\left(x_{4}-4\right)^{2}-\left(x_{5}-1\right)^{2}}
Minimize
=
{
f
1
(
x
)
=
F
1
(
x
)
f
2
(
x
)
=
∑
i
=
1
6
x
i
2
{\displaystyle {\text{Minimize}}={\begin{cases}f_{1}\left({\boldsymbol {x}}\right)&=F_{1}(x)\\f_{2}\left({\boldsymbol {x}}\right)&=\sum _{i=1}^{6}x_{i}^{2}\\\end{cases}}}
s.t.
=
{
g
1
(
x
)
=
x
1
+
x
2
−
2
≥
0
g
2
(
x
)
=
6
−
x
1
−
x
2
≥
0
g
3
(
x
)
=
2
−
x
2
+
x
1
≥
0
g
4
(
x
)
=
2
−
x
1
+
3
x
2
≥
0
g
5
(
x
)
=
4
−
(
x
3
−
3
)
2
−
x
4
≥
0
g
6
(
x
)
=
(
x
5
−
3
)
2
+
x
6
−
4
≥
0
{\displaystyle {\text{s.t.}}={\begin{cases}g_{1}\left({\boldsymbol {x}}\right)&=x_{1}+x_{2}-2\geq 0\\g_{2}\left({\boldsymbol {x}}\right)&=6-x_{1}-x_{2}\geq 0\\g_{3}\left({\boldsymbol {x}}\right)&=2-x_{2}+x_{1}\geq 0\\g_{4}\left({\boldsymbol {x}}\right)&=2-x_{1}+3x_{2}\geq 0\\g_{5}\left({\boldsymbol {x}}\right)&=4-\left(x_{3}-3\right)^{2}-x_{4}\geq 0\\g_{6}\left({\boldsymbol {x}}\right)&=\left(x_{5}-3\right)^{2}+x_{6}-4\geq 0\end{cases}}}
0
≤
x
1
,
x
2
,
x
6
≤
10
{\displaystyle 0\leq x_{1},x_{2},x_{6}\leq 10}
,
1
≤
x
3
,
x
5
≤
5
{\displaystyle 1\leq x_{3},x_{5}\leq 5}
,
0
≤
x
4
≤
6
{\displaystyle 0\leq x_{4}\leq 6}
.
CTP1 function (2 variables)
Minimize
=
{
f
1
(
x
,
y
)
=
x
f
2
(
x
,
y
)
=
(
1
+
y
)
exp
(
−
x
1
+
y
)
{\displaystyle {\text{Minimize}}={\begin{cases}f_{1}\left(x,y\right)&=x\\f_{2}\left(x,y\right)&=\left(1+y\right)\exp \left(-{\frac {x}{1+y}}\right)\end{cases}}}
s.t.
=
{
g
1
(
x
,
y
)
=
f
2
(
x
,
y
)
0.858
exp
(
−
0.541
f
1
(
x
,
y
)
)
≥
1
g
1
(
x
,
y
)
=
f
2
(
x
,
y
)
0.728
exp
(
−
0.295
f
1
(
x
,
y
)
)
≥
1
{\displaystyle {\text{s.t.}}={\begin{cases}g_{1}\left(x,y\right)&={\frac {f_{2}\left(x,y\right)}{0.858\exp \left(-0.541f_{1}\left(x,y\right)\right)}}\geq 1\\g_{1}\left(x,y\right)&={\frac {f_{2}\left(x,y\right)}{0.728\exp \left(-0.295f_{1}\left(x,y\right)\right)}}\geq 1\end{cases}}}
0
≤
x
,
y
≤
1
{\displaystyle 0\leq x,y\leq 1}
.
Проблема Констр-Экса
Minimize
=
{
f
1
(
x
,
y
)
=
x
f
2
(
x
,
y
)
=
1
+
y
x
{\displaystyle {\text{Minimize}}={\begin{cases}f_{1}\left(x,y\right)&=x\\f_{2}\left(x,y\right)&={\frac {1+y}{x}}\\\end{cases}}}
s.t.
=
{
g
1
(
x
,
y
)
=
y
+
9
x
≥
6
g
1
(
x
,
y
)
=
−
y
+
9
x
≥
1
{\displaystyle {\text{s.t.}}={\begin{cases}g_{1}\left(x,y\right)&=y+9x\geq 6\\g_{1}\left(x,y\right)&=-y+9x\geq 1\\\end{cases}}}
0.1
≤
x
≤
1
{\displaystyle 0.1\leq x\leq 1}
,
0
≤
y
≤
5
{\displaystyle 0\leq y\leq 5}
См. также
Литература
Пантелеев А. В., Метлицкая Д. В., Е.А. Алешина Методы глобальной оптимизации. Метаэвристические стратегии и алгоритмы // М.: Вузовская книга. 2013. 244 с. ISBN 978-5-9502-0743-3
Сергиенко А. Б. Тестовые функции для глобальной оптимизации.
Ссылки
Примечания
↑ Simionescu, P.A. (September 29 - October 2, 2002). New Concepts in Graphic Visualization of Objective Functions (PDF) . ASME 2002 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Montreal, Canada. pp. 891– 897. Архивировано (PDF) 8 января 2017. Дата обращения: 7 января 2017 . {{cite conference }}
: Википедия:Обслуживание CS1 (формат даты) (ссылка )
↑ Solve a Constrained Nonlinear Problem - MATLAB & Simulink (неопр.) . www.mathworks.com . Дата обращения: 29 августа 2017. Архивировано 29 августа 2017 года.
↑ Bird Problem (Constrained) | Phoenix Integration (неопр.) . Дата обращения: 29 августа 2017. Архивировано из оригинала 29 декабря 2016 года.
↑ Mishra, Sudhanshu. Some new test functions for global optimization and performance of repulsive particle swarm method (англ.) // MPRA Paper : journal. — 2006. Архивировано 4 ноября 2018 года.
↑ Townsend, Alex. Constrained optimization in Chebfun (неопр.) . chebfun.org (январь 2014). Дата обращения: 29 августа 2017. Архивировано 29 августа 2017 года.
↑ Simionescu, P.A. Computer Aided Graphing and Simulation Tools for AutoCAD Users (англ.) . — 1st. — Boca Raton, FL: CRC Press , 2014. — ISBN 978-1-4822-5290-3 .