Убывающий факториал[1] (иногда употребляются названия нижний, постепенно убывающий или нисходящий факториал[2][3]) записывается с использованием символа Похгаммера и определяется как
Возрастающий факториал (иногда употребляются названия функция Похгаммера, многочлен Похгаммера[4], верхний, постепенно возрастающий или восходящий факториал[2][3]) определяется как
Символ Похгаммера, который предложил Лео Август Похгаммер, — это обозначение , где — неотрицательное целое. В зависимости от контекста, символ Похгаммера может представлять убывающий факториал или возрастающий факториал, определённые выше. Необходимо проявлять осторожность при интерпретации символа в каждой конкретной статье. Сам Похгаммер использовал обозначение с совершенно другим смыслом, а именно для обозначения биномиального коэффициента[5].
В данной статье символ используется для представления убывающего факториала, а символ — для возрастающего факториала. Эти соглашения приняты в комбинаторике[6]. В теории специальных функций (в частности, гипергеометрической функции) символ Похгаммера используется для представления возрастающего факториала[7]
Полезный список формул для манипуляции с возрастающими факториалами в этой последней нотации дан в книге Люси Слейтер[8]. Кнут использовал термин факториальные степени, которые включают возрастающие и убывающие факториалы[9]
Если x — неотрицательное целое число, то даёт число n-перестановокx-элементного множества или, эквивалентно, число инъекций из множества с n элементами в множество размера x. Однако для этих значений используются другие обозначения, такие как и P(x,n). Символ Похгаммера используется большей частью для алгебраических целей, например, когда x является неизвестной величиной, и в этом случае означает определённый многочлен от x степени n.
при условии, что c не равно 0, −1, −2, ... . Заметим, однако, что в литературе о гипергеометрической функции для возрастающего факториала используется обозначение .
Связь с теневым исчислением
Убывающий факториал встречается в формуле, которая представляет многочлены с использованием оператора конечной разности и которая формально подобна теореме Тейлора. В этой формуле и многих других местах убывающий факториал при вычислении конечных разностей играет роль при вычислении производной. Заметим, например, похожесть
на
Похожие факты имеют место для возрастающих факториалов.
где коэффициенты те же самые, что и при разложении в степенной ряд биномиального тождества Вандермонда).
Аналогично, генерирующая функция многочленов Похгаммера тогда равна сумме теневых экспонент,
так как .
Коэффициенты связи и тождества
Убывающие и возрастающие факториалы связаны друг с другом с помощью чисел Лаха и с помощью сумм целых степеней переменной , используя числа Стирлинга второго рода, следующим образом (здесь ):[11]
Поскольку убывающие факториалы являются базисом для кольца многочленов, мы можем выразить произведение двух из них в виде линейной комбинации убывающих факториалов:
Коэффициенты при называются коэффициентами связи и имеют комбинаторную интерпретацию как число способов склеить k элементов из множества из m элементов и множества из n элементов.
Мы имеем также формулу связи для отношения двух символов Похгаммера
Кроме того, с помощью следующих тождеств:
возрастающие и убывающие факториалы могут быть обобщёны для отрицательных порядков:
Альтернативное обозначение для возрастающего факториала
для целого
И для убывающего факториала
для целого
восходит к А. Капелли (1893) и Л. Тоскано (1939) соответственно[12]. Грэм, Кнут и Паташник[13] предложили произносить это выражение как "повышение x на m" и "понижение x на m" соответственно.
Другие обозначения для убывающего факториала включают или . (См. статьи «Перестановка» и «Сочетание».)
Альтернативное обозначение для возрастающего факториала употребляется реже. Во избежание путаницы в случае, когда используется обозначение для возрастающего факториала, для обычного убывающего факториала используется обозначение [5].
Это обозначение объединяет возрастающий и убывающий факториалы, которые равны и соответственно.
Для любой фиксированной арифметической функции и символических параметров , связанные обобщённые произведения вида
можно изучать с точки зрения классов обобщённых чисел Стирлинга первого рода, определённых с помощью следующих коэффициентов при в разложении , а затем с помощью следующего рекуррентного соотношения:
↑Knuth, The Art of Computer Programming, Vol. 1, 3rd ed., p. 50.
↑ Долгое время наличие у биномиальных последовательностей многочисленных общих свойств воспринималось как нечто таинственное и необъяснимое, почему их изучение и было названо umbral calculus, т.е. теневое исчисление (Ландо 2008).
том=99. — 1992. — Вып. 5. — С. 403–422. — doi:10.2307/2325085. — arXiv:math/9205211. — JSTOR2325085.. Замечание о символах Похгаммера находится на странице 414.
Donald E. Knuth. The Art of Computer Programming. — 3rd ed.. — 1997. — Т. 1. — С. 50. — ISBN 0-201-89683-4.
Дональд Э. Кнут.1.2.5 Перестановки и факториалы // Искусство программирования. — третье издание. — Вильямс, 2002. — Т. 1 Основные алгоритмы. — ISBN 978-5-8459-1984-7, 978-5-8459-0080-7.
Пожалуйста, после исправления проблемы исключите её из списка параметров. После устранения всех недостатков этот шаблон может быть удалён любым участником.