Уравнение Фишера (математика)Уравнение Фишера (англ. Fisher's equation, также известно как уравнение Колмогорова — Петровского — Пискунова, уравнение КПП или уравнение Фишера — КПП) — нелинейное уравнение в частных производных второго порядка: ИсторияУравнение названо в честь статистика и биолога Рональда Эйлмера Фишера, предложившего его в 1937 году в контексте популяционной динамики для описания пространственного распределения выгодных аллелей и нашедшего его решение в виде бегущей волны.[1] ПрименениеУравнение Фишера встречается в задачах тепло- и массообмена, теории горения, биологии и экологии, в физике плазмы и задачах теории фазовых переходов. Оно описывает, например, массоперенос в двухкомпонентной неподвижной смеси при наличии объемной химической реакции квазипервого порядка. Кинетическая функция моделирует также автокаталитическое цепное превращение в теории горения.[2] РешенияДля скорости волны уравнение допускает решения в виде бегущей волны , причем . Форма решений уникальна для каждой длины волны. Для таких решений не существует.[1] В случае скорости могут быть получены следующие точные решения: где — произвольная постоянная.[2] Примечания
|
Portal di Ensiklopedia Dunia