Уравнение трёх моментовУравнение трёх моментов — уравнение для расчёта моментов в задаче об изгибе неразрезной многопролётной балки[1]. Известно, что балка при наличии дополнительных опор становится статически неопределимой. Одним из методов расчёта таких балок является метод сил. С помощью данного метода выводится уравнение трёх моментов[2]: Здесь — площадь эпюры моментов i-й статически определимой балки, — расстояние от центра тяжести i-й эпюры до левого конца балки, — расстояние от центра тяжести i-й эпюры до правого конца балки, — длина i-й балки. Вывод уравнения трёх моментов предусматривает, что после введения шарниров над опорами получается статически определимая система из балок, каждая из которых представляет простую балку с опорами по концам. Неизвестные в методе сил — моменты, приложенные по концам независимых балок. История![]() Винсент ван Гог, 1887 Впервые уравнение для расчёта неразрезных балок применил мостостроитель и путейский инженер Берто (Bertot) в 1855 г[3]. Сам же метод применялся ранее (1849) при реконструкции моста через Сену в Аньере (пригород Парижа, ныне известный как Аньер-сюр-Сен, фр. Asnières-sur-Seine), но опубликован Клапейроном в трудах Академии наук только в 1857 г. Так как идея основной системы с неизвестными моментами над опорами впервые была высказана Клапейроном, уравнение трёх моментов связывают с его именем[4]. Дальнейшее развитие теория неразрезных балок получила в работах Отто Мора, который обобщил теорию на случай, когда опоры расположены на разной высоте (1860). Процедура примененияПроцедура решения задачи с использованием уравнения трёх моментов такова. 1. Балка режется на отдельные части (простые балки) дополнительными внутренними шарнирами в местах крепления опор. Обозначения реакций образовавшихся связей: — моменты . 2. Нумеруются пролёты (участки балки между опорами). Число пролётов равно . Левая консоль считается нулевым пролётом, правая имеет номер . Длины пролётов: , . 3. Из условия равновесия консольных частей определяются моменты и . Остальные моменты являются неизвестными системы уравнений трёх моментов. 4. Строятся эпюры моментов и перерезывающих сил в пролётах и консолях (если они есть) балки от действия внешней нагрузки. Каждый пролёт представляет собой отдельную статически определимую балку. 5. Вычисляются площади эпюр моментов , в пролётах и расстояния от центров тяжести этих площадей до левой () и правой () опоры соответствующего пролёта. 6. Решение системы уравнений трёх моментов складывается с эпюрами моментов от внешней нагрузки. Полученная эпюра есть эпюра моментов в неразрезной балке. ПримерПостроить эпюру моментов в неразрезной балке длиной 19 метров с четырьмя опорами (рис. 1). На балку действует распределённая нагрузка кН/м, кН/м и сосредоточенная сила кН. Длина консоли: м. Длины пролетов: м. Получаем основную систему метода сил, вводя шарниры над опорами (рис. 2). Моменты и — величины известные и определяются из условия равновесия консолей. Правой консоли здесь нет, . Для левой консоли получаем . Строим эпюры моментов от внешней нагрузки в независимых балках основной (статически определимой) системы (рис. 3). Эпюры строим на сжатом волокне (как принято в машиностроении; в строительстве и архитектуре эпюры моментов принято строить на растянутом волокне). Записываем уравнения трёх моментов:
Здесь Решаем систему уравнений кНм, кНм. Строим эпюру от этих моментов (рис. 4). Складываем (по точкам) эпюры от нагрузки (рис. 3) и от моментов (рис. 4). Получаем эпюру моментов в балке (рис. 5). Очевидным достоинством метода является простота матрицы системы линейных уравнения задачи. Эта матрица — трёхдиагональная, что позволяет применять различные упрощённые численные схемы решения. Примечания
Литература
|
Portal di Ensiklopedia Dunia