Частное распределениеЧастное распределение (маргинальное распределение[1]) — вероятностное распределение вероятностей одной или множества случайных величин, рассматриваемых в качестве компоненты или множества компонент некоторого известного многомерного распределения. Частное распределение вероятностей можно вычислить, суммируя значения всех остальных величин из совместного распределения вероятностей. Иными словами, . ОпределенияПусть — функция распределения для некоторой случайной величины. Если все переменные, за исключением фиксированного , стремятся к , то будет стремиться к пределу , который является некой функцией распределения переменной ; так например, . Функция определяет некоторое одномерное распределение, которое называется частным распределением переменной [2]. Таким же образом задаётся частное распределение подмножества переменных. ПримерыПример со светофором и пешеходомДопустим, что требуется вычислить вероятность того, что пешеход будет сбит автотранспортом, переходя дорогу на пешеходном переходе, не обращая внимания на сигнал светофора. Пусть (для пешехода) — это дискретная случайная величина, принимающая одно из значений из множества , а (для сигнала светофора) — это дискретная случайная величина, принимающая одно из значений из множества . Объективно, будет зависеть от . То есть, будет принимать разные значения в зависимости от того, горит ли красный, желтый или зеленый свет, аналогично для . Например, человек более вероятно будет сбит машиной, если попытается перейти дорогу, когда для автотранспорта горит зеленый свет, чем если горит красный. Другими словами, для каждой пары значений и необходимо учитывать совместное распределение вероятностей и , чтобы найти вероятность одновременного наступления этих событий, если пешеход игнорирует состояние светофора. Однако при попытке вычислить частное распределение ищется вероятность того, что в ситуации, когда конкретное значение неизвестно и когда пешеход игнорирует сигнал светофора. В общем случае, пешеход может быть сбит при любом заданном сигнале светофора. Следовательно, частное распределение можно найти, суммируя для всех возможных значений , причем каждое значение взвешивается по своей вероятности наступления. Следующая таблица, показывает условные вероятности быть сбитым, в зависимости от сигнала светофора:
Для нахождения совместного распределения вероятностей требуется больше данных. Например, предположим, что , , . Умножая каждый столбец в условном распределении на вероятность наступления соответствующего сигнала светофора, мы получаем совместное распределение вероятностей и :
Частное распределение , так как это вероятность быть сбитым при красном, желтом или зеленом сигнале светофора. Аналогично, для — это сумма по соответствующей строке. Примечания
|
Portal di Ensiklopedia Dunia