Convex set

A convex set
A non-convex set

In Euclidean space, a region is a convex set if the following is true. For any two points inside the region, a straight line segment can be drawn. If every point on that segment is inside the region, then the region is convex.

The point is that a convex curve forms the boundary of a convex set. So, any shape which is concave, or has a hollow, cannot be a convex set.


Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia

Kembali kehalaman sebelumnya