Primitive root modulo n

In modular arithmetic, a number g is a primitive root modulo n, if every number m from 1..(n-1) can be expressed in the form of . As an example, 3 is a primitive root modulo 7:

All the elements of the group modulo 7 can be expressed that way. The number 2 is no primitive root modulo 7, because

and

Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia

Kembali kehalaman sebelumnya