Јонизујуће зрачењеЈонизујуће зрачење је електромагнетно или честично зрачење енергије које може да јонизује материју и изазове оштећење ћелија живих организама. Тако настали јони нарушавају биохемијске процесе у ћелијама, што може довести до разних поремећаја у њиховом функционисању и дељењу (размножавању), те коначно до настанка озбиљних болести, попут тумора. У јонизујуће зрачење спадају α, β, γ и Х зраци, космичко зрачење и неутрони.[1] Врсте јонизујућег зрачења![]() Алфа (α)-зрачење — може зауставити папир; Бета (β)-зрачење — може зауставити алуминијумски лим дебео неколико милиметара; Гама (γ)-зрачење — (већи део) може зауставити десетак сантиметара дебела оловна плоча Јонизујуће зрачење је она врста зрачења енергије које може директно или индиректно да јонизује атоме. У јонизујућа зрачења спадају α (алфа), β (бета), γ (гама) , Х (рендгенски зраци), космичко зрачење и неутрони. Проучавајући продорну моћ зрачења која емитује уранијум, физичар Ернест Радерфорд је утврдио да постоје две врсте зрачења (алфа и бета). Алфа-зрачење лакше се апсорбује од бета-зрачења, али више јонизује средину кроз коју пролази. Алфа и бета зраци различито скрећу у магнетном пољу, на основу чега је закључено да је реч о честицама супротног наелектрисања и различите масе. Трећи облик природне радиоактивности (гама-зрачење) открио је П. Вилар утврдивши да оно не скреће у магнетном пољу, а да се одликује изузетном продорношћу.
Извори јонизујућег зрачењаИзвори јонизујућег зрачења се деле на природне и вештачке.[5] Природно или позадинско зрачењеПриродно или позадинско зрачење потиче из три главна извора; космоса, природних радиоактивних материјала и радона: Космичко зрачењеКосмичко зрачење у укупном природном зрачењу учествује са око 13% од укупног природног или позадинског зрачења. Космичко зрачење се састоји од примарног и секундарног зрачења. Примарно космичко зрачење Примарно космичко зрачење састоји се од честица врло високих енергија (до 1018 eV). То су првенствено протони, алфа честице, тежи јони и електрони. Највећи део примарног космичког зрачења води порекло изван Сунчевог система, а један део долази са Сунца. Јако мало примарног космичког зрачења доспева до површине Земље, јер њен већи део реагује са Земљином атмосфером производећи секундарно космичко зрачење које долази до површине. Секундарно космичко зрачење Секундарно космичко зрачење настаје у атмосфери и састоји се од фотона, електрона, неутрона и гама зрака. Атмосфера и Земљино магнетно поље су природна заштита од космичког зрачења јер смањују његову количину која долази до површине Земље. На космичко зрачење утиче и Сунчева активност. Већа активност Сунца проузрокује појачање Земљиног магнетног поља, што слаби учинак космичког зрачења. Годишња доза апсорбованог космичког зрачења зависи од надморске висине. Просечна годишња доза се удвостручује на сваких 2.000 метара надморске висине. Путовање авионом може повећати годишњу дозу космичког зрачења, зависно од учесталости и висине лета и времена проведеног у ваздуху. Природно зрачење радиоактивних материјалаРадиоактивни материјали су широко распрострањени свуда у природи, у земљи, стенама, води, ваздуху и вегетацији. Природна радиоактивност може се наћи у океанима, у људском телу, грађевинским материјалима... Најважнији нуклиди, природног зрачења, из коре Земље су радиоактивни изотопи који се у њој налазе (уранијум–238, торијум–232, калијум–40). Један грам земље просечно садржи: 10-5g урана, 10-5g торијума, 10-6g калијума-40, 10-12g радијума. Ови нуклиди присутни су још из времена стварања Земље и имају врло велике периоде полураспада, често и реда 100 милиона година. Активност ових нуклида временом се смањивала па је, на пример, данашња доза калијума–40 упола мања него у време стварања Земље. Природа, храна и вода садрже одређену количину природне радиоактивности која потиче од природних радиоактивних елемената који се налазе у њој (14C, 40K, 232Th, 235U, 238U). РадонНајзначајнији радионуклиди у ваздуху су радон-222 и радон-220. Изнад нивоа мора концентрација радона је мала, док је средња вредност изнад копна 0,2 Bq/m3. Радон је природни радиоактиван гас без боје, мириса и укуса, који настаје у процесу радиоактивног распада урана преко радијума. Настали радон из земљишта продире као гас и разређује се у ваздуху. Он се распада и формира чврсте радиоактивне честице (потомке радона), које су разбацане у ваздуху. Ове честице се удисањем могу унети у плућа и наталожити на њиховој слузокожи. Како су наталожене честице емитери (α) зрачења, код такве особе је повећан ризик од појаве карцинома плућа. Највеће концентрације радона јављају у рударским окнима и пећинама. Пошто су му рудари професионално изложени, код њих је присутан највећи ризик од обољевања плућа. У наше домове радон улази кроз пукотине земљишта, а највише у подрумске просторије. Зато просторије у којима се јавља радон, треба чешће проветравати. Ефекти и ефективна доза јонизујућег зрачењаЉуди су изложени јонизујућем зрачењу од постанка врсте. Прво природном зрачењу на које се са развојем људске цивилизације и нуклеарне технологије надовезало и вештачко, људском руком створено јонизујуће зрачење. Хиљаде погодака јонизујућих честица сваке секунде (или милијарде годишње) су импресивне вредности којима је сваки човек изложен, али његов организам располаже урођеним механизмима регенерације оштећених ћелија. Само мали проценат јонизујућег зрачењем изазива иреверзибилна (неповратна) оштећења генетичког материјала у ћелијама. У већини органа и ткива тела губитак чак и значајног број ћелија не утиче на њихов поремећај и губитак функција. Међутим, ако је број изумрлих ћелија довољно велики, оштећења ће биће видљива и могу довести до смрти организма. Таква повреда се јавља код појединаца који су били изложени радијацији преко граничног прага. На неким, јонизујућим зрачењем у оштећеним ћелијама које нису „убијене“, настају модификације. Таква оштећења су „обично санирана“, најчешће су несавршена, и праћена су настанком модификацијама у ћелијама које ће бити прослеђене новоствореним, што на крају може довести до појаве туморских малигних ћелија. Ако су модификоване оне ћелије које преносе наследне информације потомци тих особе биће изложене наследним поремећајима који се код њих могу развити у различитим облицима. Зрачењем индукована рак може се манифестовати деценијама након излагања и не разликује од рака који се јављају спонтано или се приписује другим факторима. Дугорочна евалуација популације изложени радијацији у студији на око 86.500 преживелих након удара атомске бомбе у Хирошими и Нагасакију, открила је више од неколико стотина смрти изазване раком у праћеној популацији. Отприлике пола те популација је још увек живо, па ће додатна истраживања бити неопходно како би добили потпуна сазнања о појави рака у овој популацији. Излагање јонизујућем зрачењу је повезан са разним облицима леукемије и рака на многим органа, као што су плућа, дојке и штитне жлезде, али не са неким другим органима, као што простата и гениталије. На срећу по човека, постоји мала вероватноћа, да ће се клинички знаци радијационе болести јавити након излагања јонизујућем зрачењу, у каква се убраја уобичајено јонизујуће зрачење из природних извора на Земљи, или из јасно дозираних извора зрачења (нпр у медицини). Ефективна дозаИзложеност јонизујућем зрачењу описује се ефективном дозом зрачења. Процењује се да човек у просеку прими ефективну дозу од 2,5 mSv годишње од природног зрачења, али су опажена и многоструко већа озрачења неких појединаца у општој популацији. Претпоставља се да је ризик од последица тога озрачења приближно сразмеран дози. Процењује се да природно зрачење у просеку узрокује 12 do 13 случајева тумора на 1.000 становника, што је око 4% од свих малигних обољења. Ефективна доза зрачења, је збир производа еквивалентне дозе у ткиву или органу и одговарајућег ткивног тежинског фактора којим се изражава осетљивост појединих ткива и органа на појаву стохастичких ефеката јонизујућег зрачења. Она се израчунава из енергије коју зрачење преда организму, подељене са масом организма (тако се добије тзв. апсорбована доза), уз уважавање различитог дејства појединих врста зрачења и различите осетљивости појединих органа и ткива. Јединица за ефективну дозу је сиверт (Sv). Она се подудара се нпр једноликим озрачењем целог организма гама зрацима умерене енергије. Ефективна доза коју човек током једне године добије од зрачења из природних извора неколико је стотина пута мања од 1 Sv, и зато се изражава хиљаду пута мањом јединицом (mSv). Да би се проценила годишња ефективна доза, при њеном израчунавању се мора узети у обзир (а) Конверзиони коефицијент апсорбоване дозе из ваздуха и (б) Унутрашњи фактор попуњености.[6] Просечне вредности нумеричких параметара варирају у зависности од старости становништва и климе на задатој локацији. UNSCEA за 1993, користи 0,7 Sv→Gy-1 као коефицијент конверзије апсорбоване дозе у ваздуху у ефективну дозу, који се примењује код одраслих особа и 0,8 за унутрашњи фактор, односно као однос дела времена проведеног у затвореном и на отвореном простору који је 0,8 и 0,2. Компоненте годишње ефективне дозе се одређују на следећи начин:
У Свету, вредности просечне годишње ефективне доза износе 0,48 mSv, а резултати за поједине земље се крећу углавном у распону од 0,30 до 0,60 mSv. За децу и одојчад, вредности су око 10% и 30% веће, и у директној су сразмери са повећањем вредности коефицијента конверзије апсорбоване дозе у ваздуху у ефективну дозу[7]. Дозе и јединице
Употреба јонизујућег зрачењаЈонизујуће зрачење се користи у различитим индустријама, медиицини, хемији, нанотехнологији: У технологији
У медицини
У аналитичкој хемији
У нанотехнологији
Напомене
Референце
Спољашње везе
|
Portal di Ensiklopedia Dunia