Матрица ротације у линеарној алгебри представља матрицу ротација у Еуклидовом простору. Нпр. матрица ротације тачака за угао θ око исходишта (односно ротација координатног система за угао -θ око координатног почетка) у xy-картезијевом простору супротно кретању казаљке на сату дата је са:
Скуп таквих матрица димензије n чини специјалну ортогоналну групу, познату као SO(n).
Ротација у дводимензионалном простору
У дводимензионалном простору вектор нових координата насталих ротацијом одговара множењу матрице ротације и вектора координата:
.
На тај начин ротацијом добијају се нове координате (x',y') ротацијом тачке (x, y):
,
.
Ротација у тродимензионалном простору
Три основне ротације око оси x, y и z дане су са:
Опште ротације за Ојлерове углове
Општа матрица ротације у тродимензионалном простору може да се добије множењем матрица ротације за три Ојлерова угла α, β и γ (y-x-z конвенција за Ојлерове углове):
У случају ротације за углове , , око оси Z, X, Z (Z, X, Z конвенција) добија се:
Лијева теорија
Скуп матрица ротације димензије n чини Лијеву групу звану специјална ортогонална група, познату као SO(n). Са сваком Лијевом групом повезана је Лијева алгебра, тако да у овом случају имамо Лијеву алгебру:
Лијева алгебра у тродимензионалном простору : има три генератора:
Лијеве заграде тих оператора задовољавају следеће релације:
Произвољна матрица у Лијевој алгебри може да се опише помоћу три генератора као: