ஆய்லரின் நாற்கரத் தேற்றம் அல்லது ஆய்லரின் நாற்கர விதி (Euler's quadrilateral theorem, Euler's law on quadrilaterals) ஒரு குவிவுநாற்கரத்துக்கும் அதன் மூலைவிட்டங்களுக்குமுள்ள தொடர்பை விளக்குகிறது. இத்தேற்றம், கணிதவியலாளர் ஆய்லரின் (1707–1783) பெயரால் அழைக்கப்படுகிறது.
இணைகர விதியின் பொதுமைப்படுத்தலாக இத்தேற்றம் அமைகிறது. இணைகர விதியை பித்தேகோரசு தேற்றத்தின் பொதுமைப்படுத்தலாகக் காணலாம். இக்காரணத்தால், நாற்கரங்களின் மூலம் வரையறுக்கப்படும் பித்தேகோரசு தேற்றமானது, ஆய்லர்-பித்தேகோரசு தேற்றம் (Euler–Pythagoras theorem) என சிலசமயங்களில் அழைக்கப்படுகிறது.
வெட்டிக்கொள்ளும் நாற்கரங்கள், ஒருதளத்திலமையாத நாற்கரங்கள் என மேலதிக நாற்கரங்களின் கணங்களுக்கும் ஆய்லரின் தேற்றத்தை நீட்டிக்கலாம். இல், சுழற்சி கோட்டுருவாக உருவாகும் வகையில் விளிம்புகளால் இணைக்கப்பட்ட நான்கு புள்ளிகளுக்கும் (பொதுமைப்படுத்தப்பட்ட நாற்கரங்கள் என அழைக்கப்படும்), இத்தேற்றம் உண்மையாகும்.[1]
தேற்றமும் சிறப்பு வகைகளும்
ஒரு குவிவு நாற்கரத்தின் பக்கங்கள் ; மூலைவிட்டங்கள் ; மேலும் மூலைவிட்டங்களின் நடுப்புள்ளிகளை இணைக்கும் கோட்டுத்துண்டு எனில் கீழ்வரும் சமன்பாடு உண்மையாக இருக்கும்:
நாற்கரம் ஒரு இணைகரமாக இருந்தால், மூலைவிட்டங்களின் நடுப்புள்ளிகள் ஒரே புள்ளியாக இருக்கும். எனவே கோட்டுத்துண்டின் நீளம் 0. மேலும் இணைகரத்தின் இணை எதிர்பக்கங்களின் நீளங்கள் சமம். எனவே ஆய்லரின் தேற்றம் இணைகர விதியாக மாறும்:
↑Geoffrey A. Kandall: Euler's Theorem for Generalized Quadrilaterals. The College Mathematics Journal, Vol. 33, No. 5 (Nov., 2002), pp. 403–404 (JSTOR)
Geoffrey A. Kandall: Euler's Theorem for Generalized Quadrilaterals. The College Mathematics Journal, Vol. 33, No. 5 (Nov., 2002), pp. 403–404 (JSTOR)
Dietmar Herrmann: Die antike Mathematik: Eine Geschichte der griechischen Mathematik, ihrer Probleme und Lösungen. Springer, 2013, பன்னாட்டுத் தரப்புத்தக எண்9783642376122, p. 418