ஆற்றல் மின்னணுவியல்ஆற்றல் மின்னணுவியல் (power electronics) அல்லது சக்தி மின்னணுவியல் மின்னாற்றலின் கட்டுப்பாட்டிற்கும், மின்னாற்றலின் மாற்றத்திற்கும் பயன்படுகிறது. இது திண்மநிலை மின்னணுவியலின் பயன்பாடுகளில் ஒன்றாகும். சக்தி மின்னணுவியல் மின் பொறியியலில் ஒரு முக்கியப் பங்கு வகிக்கிறது. ஏனெனில் மின்சார உற்பத்தி, மின்சக்தி செலுத்துகை, பகிர்மானம், பயன்பாடு ஆகியவற்றின் மின் செயல்திறனை மேம்படுத்துவதில் இதன் பங்கு இன்றியமையாததாகும். ![]() சக்தி மின்னணுவியல் மின்திறன், மின்னணுவியல், கட்டுப்பாட்டியல் ஆகிய மூன்றையும் இணைத்து செயல்படுகிறது. மின்சுமையின் தேவைக்கேற்ப, உள்ளீட்டு மின்சக்தியை, மாற்றி, கட்டுப்படுத்தி, பிறகே மின்சுமைக்கு அனுப்புவது அவசியம். ஆகவே கட்டுப்படுத்தப்பட்ட மின்திறன் மாற்றிகளின்(Controlled power converters) தேவை எழுந்தது. இத்தேவை சக்தி மின்னணுவியலினால் நிரைவேற்றப்பட்டது. மின்சக்தியின் கட்டுப்பாடு மற்றும் மாற்றத்தில் ஒரு புரட்சியை இது உண்டாக்கியிருக்கிறது. மின்சக்தியின் வடிவத்தை (அதாவது, மின்னழுத்தம், மின்னோட்டம், அலைவெண் - இவற்றை) மாற்றியமைக்கத் தேவைப்படும் இடங்களில் சக்தி மின்னணு மாற்றிகளைக் காணலாம். இந்த மாற்றிகளின் சக்தி வீச்சு சில மில்லிவாட்டில் (ஒரு கைபேசியில் உள்ளதைப் போல) இருந்து பத்து கிகாவாட்டுகளுக்கும் மேலாக[1] (உதாரணமாக, உயர் மின்னழுத்த நேர் மின்சாரம் பரப்பும் அமைப்பைப் போன்று) ஆகும். நுண்மின்னணுவியல் சமிக்ஞைகளையும், தரவுகளையும், தகவல்களையும் செயலாக்குகிறது. இதற்கு மாறாக, சக்தி மின்னணுவியல் மின்சக்தியைச் செயலாக்குகிறது. சக்தி மின்னணுச் சாதனங்கள் பல்வேறு இடங்களிலும் உபகரணங்களிலும் பயனாகுகின்றன. தொலைக்காட்சிப் பெட்டி, தனியாள் கணிப்பொறி, மின்கல மின்னூட்டி போன்ற நுகர்வோர் மின்னணுக் கருவிகளை எடுத்துக்கொண்டால், சக்தி மின்னணுவியல் சாதனங்களில் ஒன்றான ஏசி/டிசி திருத்தியே அநேகமாக பயன்படுத்தப்படுகிறது. அதன் சக்தி வீச்சானது பத்து வாட்களில் இருந்து பல நூறு வாட்கள் வரை இருக்கும். தொழில்துறை பயன்பாட்டுகளைக் கருதினால் மாறுவேக இயக்கி (Variable speed drive) என்பது சக்தி மின்னணுவியலின் மிகவும் பொதுவான பயன்பாடாக இருந்து வருகிறது. இவ்வகை மாறுவேக இயக்கியின் சக்தி வீச்சானது சில நூறு வாட்களில் இருந்து எழுபத்து ஐந்து மெகாவாட்கள் வரை[2] இருக்ககூடும். வரலாறு1902-ஆம் ஆண்டு, பீடர் கூபர் ஹெவிட் என்பவர் பாதரச மின்வில் திருத்தியை ஏசி மின்சக்தியை டிசி மின்சக்தியாக மாற்றுவதற்காக கண்டு பிடித்தார். இதுவே சக்தி மின்னணுவியலின் துவக்கமாகும். பின்னர், 1957ல் ஜெனரல் எலெக்ட்ரிக் கம்பெனியில் சிலிக்கன் கட்டுப்படுத்தப்பட்ட திருத்தி என்ற ஒரு திண்மநிலைச் சாதனம் கண்டு பிடிக்கப்பட்டது. இந்த கண்டுபிடிப்பு, இத்தொழில் நுட்பத்தில் ஒரு திருப்பு முனையாக அமைந்து, நவீன காலத்து சக்தி மின்னணுவியலுக்கு வழி வகுத்தது. தற்காலத்தில், இச்சாதனத்திற்கு, சிலிக்கன் கட்டுப்படுத்தப்பட்ட திருத்தி என்றல்லாமல், தைரிஸ்டர் (Thyristor) என்ற பெயர் இடப்பட்டு இருக்கிறது. தைரிஸ்டர் மின்சக்தியின் கட்டுப்பாடு மற்றும் மாற்றத்தை எளிதாக்கியதோடு மட்டுமின்றி டிரையாக் (TRIAC), ஜிடிஓ (Gate turn-off thyristor;GTO), ஆற்றல் மாஸ்ஃபெட் (Power MOSFET), ஐஜிபிடி (Insulated-gate bipolar transistor; IGBT) போன்ற பல்வேறு நவீன சக்தி மின்னணுக் கருவிகள் உருவாக வித்தாகவும் அமைந்தது. இக்காலத்து உபகரணங்கிளின் உள்ளே, சக்தி இருமுனையம் (Power diode), சக்தி மாஸ்ஃபெட், ஐஜிபிடி, தைரிஸ்டர் போன்ற குறைக்கடத்தி நிலைமாற்றிகள் பயன்படுத்தப் படுகின்றன. ![]() சாதன வகைகள்உள்ளீடு மற்றும் வெளியீடு இவற்றின் மின்சக்தி வகைகளுக்கு ஏற்றார்போல் சக்தி மாற்றும் சாதனங்கள் வகைப்படுத்தப்படுகின்றன. இச்சாதனங்களுக்குப் பொதுவாக மின்சக்தி மாற்றிகள் என்ற பெயர்.
இந்த மின்சக்தி மாற்றத்தை திருத்தம் எனவும் கூறலாம். இவ்வாறு செய்யும் மின்சக்தி மாற்றியை அலைத்திருத்தி அல்லது திருத்தி என்பர்.
இந்த மின்சக்தி மாற்றத்தை மாறுதிசையாக்கம் எனவும் கூறலாம். இவ்வாறு செய்யும் மின்சக்தி மாற்றியை மாறுதிசையாக்கி என்பர்.
இவ்வாறு செய்யும் ஒரு கருவியை மாற்றி என்று கூறுவதோடு டிசி-டிசி வெட்டி (DC-DC Chopper) எனவும் கூறலாம்.
தத்துவம்மின்சுற்றின் ஒரு உறுப்பில் நுகரப்படும் சக்தியானது (P) அந்த உறுப்பின் குறுக்கிலான மின்னழுத்தத்தையும் (V) அதன் வழியாகப் பாயும் மின்னோட்டத்தையும் (I) சார்ந்து இருக்கும்.
ஓரு மிகச்சிறப்பான நிலைமாற்றியின் (Ideal switch) குறுக்கிலான மின்னழுத்தம் அந்த நிலைமாற்றியின் இணைந்த நிலையில் (Switch-on state) பூச்சியமாக இருக்கும். இதனால் மேற்காணும் சமன்பாட்டின்படி அதில் சிதறடிக்கப்பட்ட சக்தியும் (Dissipated power) பூச்சியம் ஆகும். இப்போலவே, அந்த நிலைமாற்றியின் திறந்த நிலையிலும் (Switch-off state) அதில் சிதறடிக்கப்பட்ட சக்தி பூச்சியம் ஆக இருக்கும். திறந்த நிலையில் அதில் பாயும் மின்னோட்ம் பூச்சியமாக இருப்பதே இதன் காரணம். மேல் கண்ட காரணத்தால், அனைத்து ஆற்றல் மின்னணு சாதனங்களிலும், சக்தியைக் கட்டுப்படுத்த, மாற்ற, மின் நிலைமாற்றிகள் பயன்படுத்தப் படுகின்றன. சொல்லப்போனால், குறைக்கடத்தி நிலைமாற்றிகள் (Semiconductor switches) இல்லாத சக்தி மின்னணு மாற்றிகளே கிடயாது. நிலைமாற்றிகளைப் பயன்படுத்துவதால் இச்சாதனங்களில் மின் இழப்பு மிகக் குறைவாக இருக்கும். நிலைமாற்றியை மாறி மாறி இணைத்து-திறக்கும்பொழுது, சராசரியாகப் பாயும் சக்தியைக் கட்டுப்படுத்த முடிகிறது. இவ்வாறு செய்வதற்கு துடிப்பு அகல பண்பேற்றம் (Pulse-width modulation) என்று பெயர். ஆனால் இவ்வாறு கட்டுப்படுத்துவதால் பாயும் மின்சக்தி சீராக இல்லாமல் துடிப்புடன் இருக்கிறது. இதனால் ஏற்படும் குறுவலைகளைக் குறைக்க அனைத்து சக்தி மின்னணுச் சுற்றுகளிலும் மின்வடிகட்டிகள் பயன்படுத்தப்படுகின்றன. மின்வடிகட்டிகளானவை மின்தூண்டில்களையும் (Inductor) மின்தேக்கிகளையும் (Capacitor) கொண்டவை. மேலும், ஒரு சில சக்தி மின்னணுச் சுற்றுகளில் மின்மாற்றிகளும் பயன்படுத்தப் படுகின்றன. இம்மின்மாற்றிகள் மின்னழுத்த மட்டத்தை மாற்றவும் மின் தனிமையை (Galvanic isolation) அமைப்பில் புகுக்கவும் பயன்படுகின்றன. பயன்பாடுகள்சக்தி மின்னணு அமைப்புகள் நடைமுறையில் புழங்கும் கிட்டத்தட்ட அனைத்து மின்னணுக் கருவிகளிலும் பயன்படுத்தப்படுகின்றன. எத்தகைய மின்னணுக்கருவியைக் கருதினாலும் அதனுள் ஒரு சக்தி மின்னணு மாற்றி இருப்பது உறுதியாகும். உதாரணமாக, பின்வரும் பயன்பாடுகளைக் குறிப்பிடலாம்:
பார்வைக் குறிப்புகள்
வெளிப்புற இணைப்புகள்
மேற்கோள்கள்
|
Portal di Ensiklopedia Dunia