இத்தொடரின் முதல் உறுப்புகளின் கூட்டுதொகை தோராயமாக:
இதில், இயல் மடக்கை; ஆய்லரின் மாறிலி. மடக்கையின் மதிப்புகள் மிகப்பெரியவையாக இருக்கும் என்பதால் இத்தொடருக்கு முடிவுறு எல்லைமதிப்பு இல்லை. இத்தொடர் ஒரு விரி தொடர். இது ஒரு விரியும் தொடர் என்பது 14 ஆம் நூற்றாண்டில் நிக்கோல் ஓரேசுமே என்ற பிரெஞ்சு மெய்யியலாளரால் நிறுவப்பட்டது.
வரலாறு
ஒரு அலையும் அதன் இசையங்களும்-அலைநீளங்களுடன்:
இசைத் தொடர் என்ற பெயர் இசையின் இசையங்களிலிருந்து (மேற்சுரங்கள்) பெறப்பட்டது. அதிர்கின்ற இழையொன்றின் இசையங்களின் அலைநீளங்கள், அந்த இழையின் அடிப்படை அலைநீளத்தின் ,,, ... பங்குகளாக இருக்கும்.[1][2]
ஒரு இசைத் தொடரின் முதல் உறுப்பு தவிர்த்த ஏனைய உறுப்புகள் ஒவ்வொன்றும் அதனதன் அண்டை உறுப்புகளின் இசைச் சராசரியாக இருக்கும். எனவே இசைத்தொடரின் உறுப்புகளெல்லாம் ஒரு இசைத் தொடர்வரிசையாக அமைகின்றன. "இசைச் சராசரி", "இசைத் தொடர்வரிசை" ஆகிய இரு சொற்களுமே இசையிலிருந்து பெறப்பட்டவையே.[2]
இசையைத் தாண்டி, கட்டக்கலையிலும் இசைத் தொடர்கள் பரவலாக அறியப்படுகின்றன. குறிப்பாக பரோக் கட்டிடக் கலைஞர்கள், கட்டிடங்களின் தளக் கிடைப்படங்கள், நிலைப்படங்கள் ஆகியவற்றின் அமைப்பு விகிதங்களைக் கணக்கிடுவதற்கும் தேவாலயங்கள், அரண்மனைகளின் வெளிப்பக்க, உட்பக்க அமைப்புகளுக்குள்ள தொடர்பைக் காட்டுவதற்கும் இசைத் தொடர்களைப் பயன்படுத்தினர். [3]
இசைத் தொடரின் விரிகை முதன்முதலில் 1350 களில் நிக்கோல் ஓரேசுமே என்ற பிரெஞ்சு மெய்யியலாளரால் நிறுவப்பட்டது.[2][4] அக்காலத்தில், ஓரேசுமேயின் இசைத் தொடர் ஆய்வுகளும், அவரது சமகாலத்திய ஆங்கிலக் கணிதவியலாளர் "ரிச்சர்டு சுவைன்ஹெட்" என்பாரின் வேறொரு தொடர் குறித்த ஆய்வுகளுமே, பெருக்குத் தொடர் தவிர, கணிதத்தில் அறியப்பட்ட பிற முடிவுறாத் தொடர்களாக இருந்தன.[5] எனினும் இந்த ஆய்வுகள் தெளிவற்றவையாயிருந்தன.[6] 17 ஆம் நூற்றாண்டில், இத்தாலியக் கணிதவியலாளர் பியாட்ரோ மென்கோலி, ஜேக்கப் பெர்னோலி இருவரும் இத்தொடர் குறித்த மேலதிக நிறுவல்களை நிறுவினர்.[7][8][9] பெர்னோலி, அந்நிறுவலைத் தன் சகோதரரான ஜோஹன் பெர்னோலி நிறுவியதாக அறிவித்தார். அந்நிறுவல், பின்னாளில் ஜோஹன் பெர்னோலியின் பணிகளின் சேகரிப்பில் இணைக்கப்பட்டது.[9][10]
1968 இல் டொனால்ட் குனுத், இசைத் தொடரின் பகுதிக் கூட்டுத்தொகைகளுக்கு "இசை எண்கள்" என்ற பெயரளித்து, அவற்றுக்கு என்ற குறியீட்டையும் வழங்கினார் .[11]:{{{3}}}
வரையறையும் விரிகையும்
இசைத்தொடரானது அனைத்து உறுப்புகளையும் நேர்ம அலகு பின்னங்களாகக் கொண்ட முடிவிலாத் தொடர்:
இதன் பெரும்பாலான உறுப்புகள் தொடரின் பகுதிக் கூட்டுத்தொகைகளில் உள்ளன; மேலும் இப்பகுதிக் கூட்டுத்தொகைகளின் மதிப்பு, முடிவுறு எல்லையில்லாமல் அதிகரிக்குமாதலால் இது ஒரு விரிதொடராக இருக்கும். இது ஒரு விரிதொடரென நிறுவ, பல வேறுபட்ட நிறுவல்கள் உள்ளன. அவற்றுள் "ஒப்பீட்டு தேர்வு", தொகையீடு தேர்வு" ஆகிய இரண்டும் சிறந்ததாகும்.[1][12]
ஒப்பீட்டு தேர்வு
There are infinite blue rectangles each with area 1/2, yet their total area is exceeded by that of the grey bars denoting the harmonic series
ஒரு உறுப்பின் பகுதியிலுள்ள இரண்டின் அடுக்கைவிட அடுத்தப் பெரிய இரண்டின் அடுக்கைப் பகுதியாக கொண்டு பெறப்படும் உறுப்பை அடுத்தடுத்த உறுப்பாக எடுத்துக்கொண்ட மற்றொரு விரிதொடரோடு ஒப்பிடுவதன் மூலம், இசைத்தொடரின் விரிகையை நிறுவலாம்.
இரண்டாவது தொடரின் சமமான உறுப்புகளைத் தொகுக்க, அத்தொடர் ஒரு விரிதொடராக அமைவதைக் காணலாம்:
இசைத்தொடரின் ஒவ்வொரு உறுப்பும் ஒப்பீட்டுக்கு எடுத்துக்கொள்ளப்பட்ட தொடரின் ஒத்த உறுப்புகளைவிடப் பெரியவையாக உள்ளன; மேலும் இரண்டாவது தொடர் ஒரு விரி தொடராக உள்ளது. எனவே இசைத்தொடரும் விரிதொடராக இருக்குமென்பதை அறியலாம். இதே விவாதத்தைக்கொண்டு, கீழ்வரும் முடிவும் உண்மை என்பதை வலுவாக நிறுவலாம்:
, ஒரு நேர்ம முழுஎண் எனில்:
இதுவே, 1350 களில் நிக்கோலெ ஒரேசேமே அளித்த நிறுவலாகும்.[12]
தொகையீட்டுத் தேர்வு
இசைத்தொடரில் அமையும் பரப்பளவுகள் கொண்ட செவ்வகங்களும், இச்செவ்வகங்களின் இடது மேல்வரம்புகளின் வழிச்செல்லும் அதிபரவளைவு,
ஒரு இசைத்தொடரின் கூட்டுத்தொகையை ஒரு முறையிலாத் தொகையீட்டுடன் ஒப்பிட்டுவதன் மூலம் அத்தொடர், ஒரு விரிதொடரென நிறுவமுடியும். வலப்பக்கப் படத்திலுள்ள செவ்வக வரிசையமைப்பிலுள்ள ஒவ்வொரு செவ்வகமும் ஓரலகு அகலமும் அலகுகள் உயரமுமுள்ளவை. எனவே இசைத்தொடரானது ஒருங்குதொடராக இருக்குமானால், இச்செவ்வகங்களின் பரப்பளவுகளின் கூட்டுத்தொகையானது, இசைத்தொடரின் கூட்டுத்தொகைக்குச் சமமாக இருக்கும். எனும் வளைவரையானது முழுவதுமாக, செவ்வகங்களின் மேல்வரம்புக்குக் கீழாகவே அமைகிறது. எனவே இவ்வளைவரைக்குக் கீழமையும் பரப்பளவு செவ்வகங்களின் பரப்பளவைவிடச் சிறியதாகும். மேலும் வளைவரைக்குக் கீழமையும் பரப்பளவு கீழ்வரும் முறையிலாத் தொகையீட்டுக்குச் சமமானதாக இருக்கும்:
இந்தத் தொகையீடு ஒருங்காததென்பதால், இசைத்தொடரின் கூட்டுத்தொகையும் ஒருங்காது.[12]
பகுதிக் கூட்டுத்தொகைகள்
இசைத்தொடரின் பகுதிக் கூட்டுதொகை:
பின்ன வடிவில்
தசம பின்னவடிவில்
ஒப்பளவு
1
1
~1
1
2
3
/2
1.5
1.5
3
11
/6
~1.83333
1.83333
4
25
/12
~2.08333
2.08333
5
137
/60
~2.28333
2.28333
6
49
/20
2.45
2.45
7
363
/140
~2.59286
2.59286
8
761
/280
~2.71786
2.71786
9
7129
/2520
~2.82897
2.82897
10
7381
/2520
~2.92897
2.92897
11
83711
/27720
~3.01988
3.01988
12
86021
/27720
~3.10321
3.10321
13
1145993
/360360
~3.18013
3.18013
14
1171733
/360360
~3.25156
3.25156
15
1195757
/360360
~3.31823
3.31823
16
2436559
/720720
~3.38073
3.38073
17
42142223
/12252240
~3.43955
3.43955
18
14274301
/4084080
~3.49511
3.49511
19
275295799
/77597520
~3.54774
3.54774
20
55835135
/15519504
~3.59774
3.59774
ஒரு இசைத் தொடரின் முதல் உறுப்புகளைக் கூட்ட, அத்தொடரின் பகுதிக் கூட்டுத்தொகை கிடைக்கிறது. இப்பகுதிக் கூட்டுத்தொகை, "இசை எண்" என அழைக்கப்படுகிறது; அதன் குறியீடு, :[11]
அதிகரிப்பு வீதம்
இசை எண்கள், மடக்கை அதிகரிப்புடன் மிக மெதுவாக அதிகரிக்கின்றன. தொகையீட்டுத் தேர்வில் இதனைக் காணலாம்.[13]
முழுவெண் அல்ல என்பதை நிரூபிக்க, என்ற 1 முதல் . வரையிலமைந்த மிகப்பெரிய இரண்டின் அடுக்கை எடுத்துக்கொள்ள வேண்டும்; 1 முதல் எண்களின் மீச்சிறு பொது மடங்கு எனில், ஐ சம பகுதிகளைக் கொண்ட பின்னங்களின் கூட்டுத்தொகையாக எழுதலாம்:
இப்பின்னங்களின் தொகுதிகளில் , என்ற ஒன்றுமட்டுமே ஒற்றைப்படை எண்ணாகவும் மற்றவையெல்லாம் இரட்டைப்படை எண்ணாகவும் இருக்கும். மேலும் எனில், என்பதே இரட்டைப்படையாக இருக்கும். எனவே இப்பின்னங்கள் அனைத்தும் ஒற்றைப்படைத் தொகுதிகளையும் இரட்டைப்படைப் பகுதிகளையும் கொண்டிருக்கும். எனவே முழுஎண்ணாக இருக்காது.[15]
மேலும் வலுவாக, தொடர்ந்த முழுஎண்களைக்கொண்ட எந்தவொரு தொடர்வரிசையிலும், அதன் மற்றெந்த உறுப்புகளையும் விடப் பெரிய இரண்டின் அடுக்கால் வகுபடக்கூடிய தனித்ததொரு உறுப்பு இருக்கும். மேற்கண்ட விதத்திலேயே விவாதிக்க, எந்தவிரு இசையெண்களின் வித்தியாசமும் ஒரு முழுஎண்ணாக இருக்காது என்பதை அறியலாம்.[16]
இசையெண்கள் முழுஎண்களாக இருக்காது என்ற கூற்றை நிறுவும் மற்றொரு நிறுவல், பின்னத்தின் பகுதியானது ஐ விடப் பெரிய பகா எண்களால் வகுபடும் என்பதையும், இப்பகா எண்களின் கணம் வெற்றுக்கணமாக இருக்காதென்பதற்கு பெர்ட்ரான்டின் எடுகோளையும் பயன்படுத்துகிறது. இந்நிறுவல் முறையானது , , ஆகியவற்றைத் தவிர வேறெந்த இசையெண்ணும் முடிவுறு தசமமாக இருக்காது என்பதை வலுவாகக் காட்டுகிறது.[15] "ஒவ்வொரு பகாஎண்ணும் இசை எண்களின் முடிவுறு கண உறுப்புகளின் தொகுதிகளை மட்டுமே வகுக்கின்றன" என்ற கூற்று அனுமான நிலையில் உள்ளது; நிறுவப்படவில்லை.[17]
மேற்கோள்கள்
↑ 1.01.1Rice, Adrian (2011). "The harmonic series: A primer". In Jardine, Dick; Shell-Gellasch, Amy (eds.). Mathematical Time Capsules: Historical Modules for the Mathematics Classroom. MAA Notes. Vol. 77. Washington, DC: Mathematical Association of America. pp. 269–276. ISBN978-0-88385-984-1.
↑Bernoulli, Jacob (1689). Propositiones arithmeticae de seriebus infinitis earumque summa finita [Arithmetical propositions about infinite series and their finite sums]. Basel: J. Conrad.
↑Bernoulli, Johann (1742). "Corollary III of De seriebus varia". Opera Omnia. Lausanne & Basel: Marc-Michel Bousquet & Co. vol. 4, p. 8.
Johann Bernoulli's proof is also by contradiction. It uses a telescopic sum to represent each term as
Changing the order of summation in the corresponding double series gives, in modern notation
.
↑ 11.011.1Knuth, Donald E. (1968). "1.2.7 Harmonic numbers". The Art of Computer Programming, Volume I: Fundamental Algorithms (1st ed.). Addison-Wesley. pp. 73–78. Knuth writes, of the partial sums of the harmonic series "This sum does not occur very frequently in classical mathematics, and there is no standard notation for it; but in the analysis of algorithms it pops up nearly every time we turn around, and we will consistently use the symbol ... The letter stands for "harmonic", and we call a "harmonic number" because [the infinite series] is customarily called the harmonic series."