சிக்கலெண் தளத்தில் சிக்கலெண் z , அதன் இணைச் சிக்கலெண் z̅ இரண்டின் வடிவவியல் விளக்கம் படத்தில் காட்டப்பட்டுள்ளது. மெய்யச்சில் z இன் பிரதிபலிப்பே அதன் இணைச் சிக்கலெண் z̅ ஆகும்.
கணிதத்தில் இணைச் சிக்கலெண்கள் அல்லது இணையியச் சிக்கலெண்கள் (complex conjugates) என்பவை சமமான மெய்ப்பகுதிகளையும், குறியில் மட்டும் எதிராகவும் அளவில் சமமாகவும் உள்ள கற்பனைப் பகுதிகளையும் கொண்ட சிக்கலெண் சோடியைக் குறிக்கும்[1][2]. எடுத்துக்காட்டாக,
3 + 4i , 3 − 4i இரண்டும் இணைச் சிக்கலெண்கள்.
சில இடங்களில், இணைச் சிக்கலெண்ணானது என்ற குறியீட்டாலும் குறிக்கப்படுகிறது.
சிக்கலெண்கள், சிக்கலெண் தளத்திலமைந்த புள்ளிகளாகக் கொள்ளப்படுகின்றன. கார்ட்டீசியன் ஆள்கூற்று முறைமையில்x-அச்சு, y-அச்சு இரண்டும் ஆதியில் வெட்டிக்கொள்ளும் மெய்யெண் கோடுகளாகும். சிக்கலெண் தளத்தில், y-அச்சானது உடன் பெருக்கக் கிடைக்கும் மெய்யெண்களால் ஆனதாகும். x-அச்சானது மெய் அச்சு என்றும் (குறியீடு Re), y-அச்சானது கற்பனை அச்சு, (குறியீடு Im) என்றும் அழைக்கப்படுகின்றன. இந்த Re , Im அச்சுகளால் தீர்மானிக்கப்படும் தளத்தில் அனைத்து சிக்கலெண்களும் அமைகின்றன. இதுவே சிக்கலெண் தளமாகும். இத் தளத்தில், x-அச்சில் பிரதிபலிக்கப்படும் ஒரு சிக்கலெண்ணின் எதிருரு, அச் சிக்கலெண்ணின் இணைச் சிக்கலெண்ணாக இருக்கும். வடிவவியல் விளக்கமாக, இப் பிரதிபலிப்பு அச் சிக்கலெண்ணின் ஆரக்கோலின் மெய் அச்சைப் பொறுத்த 180 பாகைகள் சுழற்சிக்குச் சமானமானதாகும்.
கீழே தரப்பட்டுள்ள பண்புகள் அனைத்து சிக்கலெண்கள் z , w அனைத்துக்கும் உண்மையாகும். z , w இரண்டையும் a + ib வடிவில் எடுத்துக்கொண்டு இப் பண்புகளை நிறுவ முடியும்.
மெய்யெண் கெழுக்களைக் கொண்ட பல்லுறுப்புக்கோவை மேலும் எனில், என்பதும் உண்மையாகும். அதாவது, மெய்யெண் பல்லுறுப்புக்கோவைகளின் மெய்யெண்ணல்லாத மூலங்கள் இணை சிக்கலெண்களாக அமையும்.
ஒரு மாறியாகப் பயன்பாடு
ஒரு சிக்கலெண் அல்லது தரப்பட்டால் அதன் இணைச் சிக்கலெண்ணைக்கொண்டு z-மாறியின் பகுதிகளைப் பெறமுடியும்:
Budinich, P. and Trautman, A. The Spinorial Chessboard. Spinger-Verlag, 1988. பன்னாட்டுத் தரப்புத்தக எண்0-387-19078-3. (antilinear maps are discussed in section 3.3).