இராமானுசரின் தலையாய தேற்றம் (Ramanujan's master theorem), சீனிவாச இராமானுசன் என்ற கணிதவியலாளரின் பெயரிடப்பட்டகணிதத்தில் ஒரு தேற்றமாகும்.[1] என்று பெயரிடப்பட்டது) இத்தேற்றமானது பகுப்பாய்வு சார்பின் மெல்லின் உருமாற்றுக்கு பகுமுறை விரிவாக்கத்திற்கான ஒரு உத்தியை வழங்குகிறது.
இராமானுசரின் நோட்டு புத்தகத்தில் எழுதப்பட்டு இருந்த இராமானுசரின் தலையாய தேற்றத்தின் ஒரு பக்கம்.
இந்தக் தேற்றத்தின் உயர் பரிமாண பதிப்புகள் குவாண்டம் இயற்பியலில் (ஃபேய்ன்மேன் விளக்கப்படங்கள் மூலம்) பயன்படுகின்றன.[2]
இதேபோன்ற முடிவுகளை ஜெ. டபிள்யு. எல் கிளாசர் பெற்றார்.[3]
மாற்றுவடிவ சூத்திரம்
இராமானுசரின் தலையாய தேற்றத்தின் மாற்று வடிவ சூத்திரம் பின்வருமாறு:
மேற்கண்ட சூத்திரத்தில் என்று பிரதியிட்டு காமா சார்பு சமன்பாட்டினைப் பயன்படுத்த இவ்வடிவமானது முன்னர் குறிப்பிட்ட வடிவிற்கு ஒருங்கும். .
சார்பு -ன் வளர்நிலைகளைப் பொறுத்து என்ற இடைவெளியில் மேற்கண்ட தொகையானது ஒருங்கக்ககூடியது ஆகும்.[4]
நிறுவல்
"இயல்பான" அனுமானங்களுடன் (இருப்பினும் பலவீனமான போதுமான நிபந்தனைகளாக இல்லாதவை) எச்ச தேற்றம் மற்றும் நன்கு அறியப்பட்ட மெல்லின் தலைகீழ் தேற்றம் ஆகியவற்றை ஆதாரமாகக் கொண்டு, கணிதவியலாளர் சி.எச்சு ஆர்டி, இராமானுசரின் தலையாய தேற்றத்தின் நிறுவலை அளித்துள்ளார்.[5]
பெர்னோலி பல்லுறுப்புக் கோவைகளில் பயன்பாடு
பெர்னோலி பல்லுறுப்புக் கோவை களின் பிறப்பாக்கி சார்பு வருமாறு:
இந்த பல்லுறுப்புக்கோவைகள் ஹர்விட்ஸ் இசீட்டா சார்பின் வடிவில் வழங்கப்படுகின்றன:
இது க்கு என்றவாறு உள்ளது.
இராமானுசரின் தலையாய தேற்றம் மற்றும் பெர்னோலி பல்லுறுப்புக் கோவைகளின் பிறப்பாக்கி சார்பு ஆகியவற்றை0 பயன்படுத்தும் போது பின்வரும் தொகை வடிவில் இருக்கும்:[6]
↑Glaisher, J. W. L. (1874). "A new formula in definite integrals". The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science48 (315): 53–55.
↑Espinosa, O.; Moll, V. (2002). "On some definite integrals involving the Hurwitz zeta function. Part 2". The Ramanujan Journal6 (4): 449–468. doi:10.1023/A:1021171500736.