ஈய-அமில மின்கலம்
ஈய-அமில மின்கலம் ஒரு வகை மீள்-மின்னேற்றக்கூடிய மின்கலமாகும். உலகில் பயன்படுத்தப்படும் மின்கலங்களில் 40-45% இது பிடிக்கின்றது. வாகனங்களில் பிரதான மின்கலமாக தற்காலம் வரை இம்மின்கலமே பயன்படுத்தப்படுகின்றது. இம்மின்கலம் 1859ஆம் ஆண்டு பிரான்சு நாட்டைச் சேர்ந்தவரான கஸ்டன் பிளான்டே என்பவரால் கண்டுபிடிக்கப்பட்டது. இதனை விட வினைத்திறன் அதிகமான மின்கலங்கள் கண்டுபிடிக்கப்பட்டாலும், இதன் விலை ஒப்பீட்டளவில் குறைவென்பதால் இம்மின்கலமே அதிகளவில் பயன்படுத்தப்படுகின்றது. பொதுவாக ஆறு 2 V மின்கலங்களின் கூட்டாக 12 V பட்டரியாக விற்பனை செய்யப்படுகின்றது. இதன் பிரதான கூறுகளாக சல்பூரிக் அமிலமும், ஈயமும், ஈய ஒக்சைட்டும் காணப்படுகின்றன. இவற்றிற்கிடையில் ஏற்படும் மின்னிரசாயனத் தாக்கங்களைப் பயன்படுத்தி இம்மின்கலத்தை மின்னேற்றியும், மின்னிறக்கியும் பயன்படுத்தலாம். வைத்தியசாலை உபகரணங்களிலும், தொலைபேசிக் கோபுரங்களிலும் ஈய-அமில மின்கலத்தின் மேம்படுத்தப்பட்ட வடிவமான VRLA மின்கலம் பயன்படுத்தப்படுகின்றது. இவ்வகை மின்கலத்தில் சாதாரண ஈய-அமில மின்கலத்தில் உள்ள நீர் மின்பகுப்படைதல் போன்ற பல்வேறு குறைபாடுகள் நீக்கப்பட்டுள்ளது. மின்னிரசாயனத் தொழிற்பாடுமின்னிறக்கல்![]() மின்னேற்றப்பட்ட ஈய-அமில மின்கலத்தை உபகரணத்தின் மின்சுற்றோடு தொடுக்கும் போது மின்கலம் மின்னிறக்கப்படும். இதன் போது இரு மின்வாய்களும் ஈய(II)சல்பேற்றாக (PbSO4) மாற்றமடையும். சல்பூரிக் அமிலம் மேலும் மேலும் சல்பேற்று அயன்களை (SO42-) இழந்து மின்பகுபொருள் மிக ஐதான சல்பூரிக் அமிலமாகும். மின்பகுபொருளில் நீரின் அளவு அதிகமாகும். மின்கலத்தின் மறை முனைவிலிருந்து இலத்திரன்களை மின்கடத்தியூடாக நேர் முனைவுக்கு மாற்றுவதன் மூலம் இச்செயற்பாடு நடைபெறும். கடத்துப்படும் இலத்திரன்களின் சக்தியைக் கொண்டு தொடுக்கப்பட்டுள்ள உபகரணம் செயற்படும். மறை முனைவில் நடைபெறும் தாக்கம்:
நேர் முனைவில் நடைபெறும் தாக்கம்:
மொத்தத் தாக்கம்:
மின்னேற்றல்![]() ஈய-அமில மின்கலத்தை நேரோட்டத்தில் (DC) மின்னேற்ற வேண்டும். மறை முனைவை மின்கலத்தின் மறை முனைவுடனும், நேர் முனைவை மின்கலத்தின் நேர் முனைவுடனும் தொடுக்க வேண்டும். மின்னேற்றும் போது மறை முனைவு ஈயமாகவும், நேர் முனைவு ஈய ஒக்சைட்டாகவும் மாற்றமடையும். இதன் போது நேர் முனைவிலிருந்து புறவிசையைப் பயன்படுத்தி இலத்திரன்கள் அகற்றப்படுவதுடன், மறை முனைவில் இலத்திரன்கள் சேர்க்கப்படும். மறை முனைவுத் தாக்கம்:
நேர் முனைவுத் தாக்கம்:
அதிகளவாக மின்னேற்றமடைதல் தவிர்க்கப்பட வேண்டியதாகும். ஏனெனில் அதிகமாக மின்னேற்றம் வழங்கப்பட்டால் கரைசலிலுள்ள நீர் மின்பகுப்படைந்து ஐதரசனாகவும், ஒக்சிசனாகவும் மாற்றப்பட்டு விடும். எனவே இடைக்கிடை நீர் மின்கலத்துக்குள் இடப்பட வேண்டும். மின்னேற்றத்தை அளவிடல்![]() ஏனைய மின்கலங்களைப் போலல்லாது மின்பகுபொருள் நேரடியாக மின்னிரசாயனத் தாக்கங்களில் பங்கு கொள்வதால் மின்பகுபொருளான சல்பூரிக் அமிலக் கரைசலின் நீர் ஒப்படர்த்தியை அளவிடுவதன் மூலம் இலகுவாக அளந்து விடலாம். மின்கலம் பயன்படுத்தப்பட்டு மின்னிறக்கமடையும் போது சல்பூரிக் அமிலத்தின் செறிவு குறைவடைவதால் கரைசலின் நீர் ஒப்படர்த்தியும் குறைவடையும். எனவே அதிக நீர் ஒப்படர்த்தி அதிக மின்னேற்றத்தையும், குறைவான நீர் ஒப்படர்த்தி குறைவான மின்னேற்றத்தையும் குறிக்கின்றன. மின்கலத்தைத் தனியாக ஒரு மின்கடத்தியுடனும் வோல்ட் மானியுடனும் தொடுப்பதனாலும் மின்கலத்தின் ஏற்றத்தைக் கணிக்கலாம். வெடித்தல் அபாயம்![]() அதிகளவாக மின்னேற்றப்படும் போது சல்பூரிக் அமிலக் கரைசலில் உள்ள நீர் ஒக்சிசனாகவும், ஐதரசனாகவும் மின்பகுப்படையும். இவற்றில் ஐதரசன் தீப்பற்றினால் மிகவும் அபாயகரமாக வெடிக்கலாம். இதனைத் தடுப்பதற்காக சாதாரண ஈய-அமில மின்கலங்களில் வாயு வெளியேறுவதற்கான துவாரங்களும், VRLA வகை ஈய அமில மின்கலங்களில் ஐதரசனையு ஒக்சிசனையும் மீண்டும் நீராக மாற்றும் வால்வுகளும் காணப்படும் (எனவே VRLA வகை மின்கலங்களுக்கு இடைக்கிடை வெளியேறிய நீரை ஈடு செய்யத் தேவையில்லை). எனினும் வெளியேறும் வேகத்தை விட அல்லது மீள்தொகுக்கும் வேகத்தை விட மிக அதிகளவில் ஐதரசனும் ஒக்சிசனும் உருவாகினால் வெடித்தல் அபாயம் மிக அதிகமாகும். இதன் போது தற்செயலாக தீப்பொறி பட்டால் ஐதரசன் அதிக செறிவிலிருக்கும் ஒக்சிசனுடன் தீப்பிடித்து மின்கலம் பயங்கரமாக வெடிக்கலாம். இதன் போது ஈய-அமில மின்கலத்திலுள்ள சல்பூரிக் அமிலம் தெறிக்கப்பட்டு உடலில் பட்டால் உடல் அரிப்படைய வாய்ப்புண்டு. வெடித்தலால் தீக்காயமும் ஏற்படலாம். காற்றோட்டமற்ற இடத்தில் வெளியேறும் வாயு அருகிலேயே தேங்குவதால் அவ்விடங்களில் இக்கலங்களை மின்னேற்றல் தவிர்க்கப்பட வேண்டும். குறிப்பிட்டளவு நேரத்துக்கு அதிகமாக மின்னேற்றலும் தவிர்க்கப்பட வேண்டும். மேற்கோள்கள்
|
Portal di Ensiklopedia Dunia