வளைகோடுகளின் வகையீட்டு வடிவவியலில் இழைவான தள வளைகோடு ஒன்றின் மீதுள்ள ஒரு புள்ளி p இல் வளைகோட்டின் கொஞ்சு வட்டம் அல்லது ஒட்டு வட்டம் (osculating circle) என்பது, p மற்றும் p க்கு நுண்ணளவு அருகாக வட்டத்தின் மீதமையும் இரண்டு புள்ளிகள் ஆகியவற்றின் வழியாகச் செல்லும் வட்டம் என வழக்கமாக வரையறுக்கப்படுகிறது. கொஞ்சு வட்டத்தின் மையம் வளைகோட்டின் உட்செங்கோட்டின் மீதமைவதோடு அதன் வளைவானதுp புள்ளியில் மூல வளைகோட்டின் வளைவுக்குச் சமமாக இருக்கும். p இல் அவ்வளைகோட்டிற்கானத் தொடு வட்டங்களுள் ஒன்றாக கொஞ்சு வட்டம் இருக்கும். இவ் வட்டத்திற்கு கணிதவியலாளர் லைப்னிட்சு, 'முத்தமிடும் வட்டம்' எனப் பொருள்படும் circulus osculans என்ற இலத்தீன் மொழிப் பெயரிட்டார். ஒரு புள்ளியில் கொஞ்சு வட்டத்தின் மையமும் ஆரமும் முறையே மூல வளைகோட்டின் அப்புள்ளியிலான வளைவு மையம் மற்றும் வளைவு ஆரமாகும்
கணித விளக்கம்
γ(s) (s, (வில்லின் நீளம்), வளைகோடு; T(s), அலகு தொடுகோட்டுத் திசையன்; N(s), அலகு செங்கோட்டு திசையன்; k(s), வளைவு (குறியிடப்பட்டது); R(s), வளைவின் ஆரம் எனில்:
P ஆனது γ மீதுள்ள ஒரு புள்ளி; அப்புள்ளியில் k ≠ 0 எனில் அப்புள்ளியில் வளைகோட்டின் வளைவு மையம் Q ஆனது அலகு செங்கோட்டுத் திசையன் (N) மீது R தொலைவில் இருக்கும். மேலும் k நேர் மதிப்பாக இருந்தால் N இன் திசையிலும் k எதிர் மதிப்பாக இருந்தால் எதிர்த்திசையிலும் வளைவு மையம் இருக்கும் Q வை மையமாகவும் R ஐ ஆரமாகவும் கொண்டு வரையப்படும் வட்டமானது P புள்ளியில், γ வளைகோட்டின் கொஞ்சு வட்டம் என அழைக்கப்படுகிறது..
தள வளைகோடானது வேறொரு சீரான அளபுருவாக்கத்தில் கீழுள்ளாவறு தரப்பட்டால்:
(சீரான என்பது ). k(t), N(t), R(t), Q(t) அனைத்தும் பின்னுள்ளவாறு அமையும்:
கார்ட்டீசியன் ஆயதொலைவுகள்
f என்ற ஏதேனுமொரு சார்புக்கு t = x,y = f(x) எனப் பதிலிட்டு, கொஞ்சு வட்ட மையத்தின் கார்ட்டீசியன் ஆயதொலைவுகளைக் காணலாம்:
பண்புகள்
தேவையான அளவு இழைவான துணையலகுச் சமன்பாட்டுகளைக் (இருமுறை தொடர்ச்சியாக வகையிடத்தக்கது) கொண்ட ஒரு வளைகோடு C க்கு அதன் மீதுள்ள புள்ளி P இல் அமையும் கொஞ்சு வட்டத்தை எல்லை முறையில் காணலாம்:
C இன் மீதுள்ள வெவ்வேறான மூன்று புள்ளிகளும் P ஐ நெருங்கும்போது, அம்மூன்று புள்ளிகளின் வழியே செல்லும் வட்டங்களின் எல்லை கொஞ்சு வட்டமாக இருக்கும்.[1] இது, வட்டத்தின் மீதுள்ள வெவ்வேறான இருபுள்ளிகளின் வழியே செல்லும் வெட்டுக்கோட்டின் எல்லையாக தொடுகோட்டைக் காண்பதற்கு ஒத்ததாக அமையும்.
C வளைகோட்டுக்கு P புள்ளியிலமையும் கொஞ்சு வட்டம் S பின்வரும் பண்புகளைக் கொண்டிருக்கும்:
வட்டம் S ஆனது P வழியே செல்லும்.
வட்டம் S, வளைகோடு C ஆகிய இறன்டும் P இல் பொதுத் தொடுகோட்டினையும் பொது செங்கோட்டையும் கொண்டிருக்கும்.
P க்கு மிக அருகில் C மீதும் S மீதுமுள்ள புள்ளிகளுக்கு இடைப்பட்ட தூரமானது, (செங்கோட்டுத் திசையில்) P இலிருந்து அமையும் தொலைவின் (தொடுகோட்டுத் திசையுல்) கனவடுக்கு அல்லது அதற்கும் உயரடுக்குகளின் விகிதத்தில் குறையும். இது பொதுவாக, வளைகோடும் அதன் கொஞ்சு வட்டமும் P இல், இரண்டாம் வரிசை தொடுகை கொண்டவை எனப்படுகிறது.
P இல் வளைவின் வகைக்கெழு s ப்பொறுத்து பூச்சியமாக இருந்தால், கொஞ்சு வட்டமானது P இல் வளைகோட்டை வெட்டும். வளைவரையின் வகைக்கெழு பூச்சியமாகும் P புள்ளிகள் வளைகோட்டின் உச்சிகள் எனப்படும். P புள்ளியானது உச்சியாக இருந்தால், வளைகோடும் கொஞ்சு வட்டமும் குறைந்தபட்சமாக மூன்றாம் வரிசைத் தொடுகை கொண்டிருக்கும். மேலும் P இல் வளைவின் மதிப்பு பூச்சியமற்ற இடஞ்சார் பெருமம் அல்லது சிறுமமாக இருந்தால், கொஞ்சு வட்டமானது வளைகோட்டை P இல் தொடும் ஆனால் வெட்டாது.
கொஞ்சு வட்டங்களின் ஒரு-துணையலகுக் குடும்பத்தின் சூழ்வாக வளைகோடு C ஐப் பெறலாம். இக் கொஞ்சு வட்டங்களின் மையங்கள் (வளைவு மையங்கள்), C இன் மலரி என அழைக்கப்படும் வளைகோட்டை உருவாக்கும். C இன் உச்சிகள், மலரியின் ஒற்றைப் புள்ளிகளாக அமையும்.
C இன் ஒரு வில்லானது, C இன் ஏதாவதொரு உச்சியிலிருந்து விலகியிருக்கும் புள்ளிகளைக் கொண்டிருந்தால் அவ்வில்லுக்குள்ளமையும் புள்ளிகளின் கொஞ்சு வட்டங்கள் ஒன்றையொன்று வெட்டாதவையாகவும் ஒன்றுக்குள்ளொன்று பொதிந்தவையாகவும் இருக்கும்.[2]
எடுத்துக்காட்டுகள்
பரவளையம்
பரவளையத்தின் உச்சியில் கொஞ்சு வட்டம். இதன் ஆரம் 0.5, நான்காம் வரிசை தொடுகை கொண்டுள்ளது.
பரவளைவின் உச்சியில் () வளைவின் ஆரம் R(0) = 0.5. பரவளைவிற்கும் அதன் கொஞ்சு வட்டத்திற்கும் உச்சியில் தொடுகையின் வரிசை நான்காகும். t இன் மதிப்பு அதிகரிக்கரிக்க, வளைவு ஆரத்தின் அதிகரிப்பு ~ t3. ஆக இருக்கும். அதாவது வளைகோடு மேலும் மேலும் நேராகிக்கொண்டே வரும்.
வட்டவுரு
வட்டப்புள்ளியுரு (நீலம்), அதன் கொஞ்சு வட்டம் (சிவப்பு), மலரி (பச்சை).
↑Actually, point P plus two additional points, one on either side of P will do. See Lamb (on line): Horace Lamb (1897). An Elementary Course of Infinitesimal Calculus. University Press. p. 406. osculating circle.