செங்கோட்டுச்சந்தித் தொகுதி![]() வடிவவியலில் செங்கோட்டுச்சந்தித் தொகுதி அல்லது செங்குத்துச்சந்தித் தொகுதி (orthocentric system) என்பது ஒருதளத்திலமைந்த குறிப்பிட்ட நான்கு புள்ளிகளைக் கொண்ட கணமாகும். இந்நான்கு புள்ளிகளில் எவையேனும் மூன்று புள்ளிகளைக்கொண்டு உருவாக்கப்படும் முக்கோணத்தின் செங்கோட்டுச்சந்தியாக நான்காவது புள்ளி அமையவேண்டும் என்பதே இத்தொகுதிக்கான வரையறையாகும். நான்கு புள்ளிகள் ஒரு செங்கோட்டுச்சந்தித் தொகுதியாக இருக்கும்பொழுது, அவை ஒவ்வொன்றும் பிற மூன்று புள்ளிகளைக் கொண்டும் வரையப்படும் முக்கோணத்தின் செங்கோட்டுச்சந்தியாக இருக்கும். இவ்வாறு வரையப்படும் நான்கு முக்கோணங்களுக்கும் ஒரே வட்டம் ஒன்பது-புள்ளி வட்டமாக அமையும். இதனால் நான்கு முக்கோணங்களின் சுற்றுவட்டங்களின் ஆரங்கள் சம அளவானதாகும். பொது ஒன்பது-புள்ளி வட்டம்செங்கோட்டுச்சந்தித் தொகுதியின் நான்கு புள்ளிகளைக் கொண்டு வரையக்கூடிய நான்கு முக்கோணங்களுக்கும் பொதுவானதாக அமையும் ஒன்பது-புள்ளிவட்டத்தின் மையமானது, அந்த நான்கு புள்ளிகளின் திணிவு மையத்தில் அமையும். அந்த நான்கு புள்ளிகளில் ஏதாவது இரு புள்ளிகளை இணைத்து வரையக்கூடிய ஆறு கோட்டுத்துண்டுகளின் நடுப்புள்ளிகள் வழியாக இந்தப் பொது வட்டம் செல்லும் என்பதால் ஒன்பது-புள்ளி வட்டமையத்திற்கும் அந்த ஆறு நடுப்புள்ளிகளில் எந்தவொன்றுக்கும் இடைப்பட்ட தூரமே ஒன்பது-புள்ளி வட்டத்தின் ஆரமாகவும் இருக்கும். மேலும், தொகுதியின் நான்கு புள்ளிகளில் மூன்றினைக் கொண்டு வரையப்பட்ட முக்கோணத்தின் சுற்றுவட்ட மையத்தையும் அம்முக்கோணத்திற்குச் செங்கோட்டுச்சந்தியாக அமையக்கூடிய தொகுதியின் நான்காவது புள்ளியையும் இணைக்கும் கோட்டுத்துண்டின் நடுப்புள்ளியாகவும் இந்தப் பொது ஒன்பது-புள்ளி வட்டம் அமையும். தொகுதியின் நான்கு புள்ளிகளில் எவையேனும் மூன்றினைக் கொண்டு வரையக்கூடிய நான்கு முக்கோணங்களின் உள்வட்டங்கள், வெளிவட்டங்கள் ஆகிய 16 வட்டங்களையும் இந்தப் பொது ஒன்பது-புள்ளி வட்டம் தொடும்.[1] பொது ஆர்த்திக் முக்கோணம்செங்கோட்டுச்சந்தித் தொகுதியின் நான்கு புள்ளிகளை இரண்டிரண்டாக இணைக்கக் கிடைக்கும் ஆறு கோட்டுத்துண்டுகளையும் கோடுகளாக நீட்டிக்கும்பொழுது, அவை ஏழு சந்திப்புப் புள்ளிகளைத் தோற்றுவிக்கும். இந்த ஏழு புள்ளிகளில் நான்கு செங்கோட்டுச்சந்தித் தொகுதியின் நான்கு புள்ளிகளாகவும், மீதமுள்ள மூன்றும் குத்துக்கோடுகளின் அடிப்புள்ளிகளாக இருக்கும். இந்த மூன்று குத்துக்கோடுகளின் அடிப்புள்ளிகளை இணைத்து வரையப்படும் முக்கோணமானது, செங்கோட்டுச்சந்தித் தொகுதியின் நான்கு புள்ளிகளைக் கொண்டு வரையக்கூடிய நான்கு முக்கோணங்களுக்கும் பொதுவான ஆர்த்திக் முக்கோணமாகும். செங்கோட்டுச்சந்தித் தொகுதியின் நான்கு புள்ளிகளில் ஒன்று இந்தப் பொது ஆர்த்திக் முக்கோணத்தின் உள்வட்டமையமாகவும், மீதமுள்ள மூன்று புள்ளிகளும் ஆர்த்திக் முக்கோணத்தின் வெளிவட்டமையங்களாகவும் அமைகின்றன. மேலும் மூலத்தொகுதியிலுள்ள நான்கு புள்ளிகளில் பொது ஒன்பது-புள்ளி வட்டமையத்திற்கு அருகாமையிலுள்ள புள்ளியே பொது ஆர்த்திக் முக்கோணத்தின் உள்வட்டமையமாக இருக்கும். இதன்படி, ஒரு முக்கோணத்தின் உள்வட்டமையமும் அதன் வெளிவட்டமையங்களும் ஒரு செங்கோட்டுச்சந்தித் தொகுதியாக இருக்குமென்பதை அறியலாம்.[2]:p.182 இயலுறு அமைப்புசெங்கோட்டுச்சந்தி தொகுதியின் நான்கு புள்ளிகளில், ஆர்த்திக் முக்கோணத்தின் உள்வட்டமையமாக அமையும் புள்ளியை H என்றும் மீதமுள்ள மூன்று புள்ளிகளை A, B, C எனவும் குறித்தல் வழமையாகக் குறிக்கப்படுகின்றன. இநத இயலுறு அமைப்பில் (normalized configuration) H புள்ளியானது எப்பொழுதும் முக்கோணம் ABC இன் உட்புறத்திலும். முக்கோணம் ABC ஒரு குறுங்கோண முக்கோணமாகவும் இருக்கும். தொகுதியின் நான்கு புள்ளிகளைக்கொண்டு வரையக்கூடிய நான்கு முக்கோணங்கள் ABC , ABH , ACH , BCH ஆகும். தொகுதியின் நான்கு புள்ளிகளை இரண்டிரண்டாக இணைக்கக் கிடைக்கும் ஆறு கோட்டுத்துண்டுகள்: AB, AC, BC, AH, BH, CH. இக்கோடுகளால் கிடைக்கும் ஏழு சந்திப்புப் புள்ளிகள்: A, B, C, H (செங்குத்துச்சந்தித் தொகுதியின் நான்கு புள்ளிகள்); HA, HB, HC (முக்கோணம் ABC குத்துக்கோடுகளின் அடிப்புள்ளிகள் மற்றும் ஆர்த்திக் முக்கோணத்தின் உச்சிகள்). செங்குத்து அச்சுகள்ஒரு செங்கோட்டுச்சந்தித் தொகுதியின் நான்கு புள்ளிகளால் அமையக்கூடிய நான்கு முக்கோணங்கள் ஒவ்வொன்றிலும் ஆர்த்திக் முக்கோணத்தின் பக்கங்கள் அதன் மூல முக்கோணத்தின் பக்கங்களைச் சந்திக்கும் மூன்று புள்ளிகளின் வழியாகச் செல்லும் கோடு ஆர்த்திக் அச்சு அல்லது செங்குத்து அச்சு என அழைக்கப்படுகிறது. எனவே ஒரு செங்கோட்டுச்சந்தித் தொகுதிக்கு நான்கு ஆர்த்திக் அச்சுகள் உள்ளன. செங்கோட்டுச்சந்தித் தொகுதியின் இயலுறு அமைப்பில், முக்கோணம் ABC இன் ஆர்த்திக் முக்கோணம் HAHBHC ஆகும். இதில் ஆர்த்திக் முக்கோணத்தின் பக்கங்கள் HB HC, HA HB, HA HC மூன்றும் மூலமுக்கோணம் ABC இன் பக்கங்கள் BC , AB , AC ஐ சந்திக்கும் புள்ளிகள் முறையே OA, OC, OB எனில், இம்மூன்று புள்ளிகளின் வழியே செல்லும்கோடு ஆர்த்திக் அச்சாகும்[3]. இதே போல தொகுதியின் மற்ற மூன்று முக்கோணங்களும் (ABH, ACH and BCH) ஆர்த்திக் அச்சுகளைக் காணலாம். வேறுசில பண்புகள்
இதில் R -நான்கு முக்கோணங்களின் சமஅளவுச் சுற்றுவட்ட ஆரமாகும். சைன் விதியைப் பயன்படுத்தக் கிடைக்கும் முடிவு:
மேற்கோள்கள்
வெளியிணைப்புகள்
|
Portal di Ensiklopedia Dunia