கணிதத்தில் ஒரு வகைக்கெழுச் சமன்பாடு அல்லது வகையீட்டுச் சமன்பாடு (differential equation) என்பது ஒன்று அல்லது ஒன்றுக்கு மேற்பட்ட மாறிகளில் அமைந்த, மதிப்பறியப்படாத ஒரு சார்பின்சமன்பாடாகும். இச்சமன்பாடு சார்பின் மதிப்பையும் அச்சார்பின் வெவ்வேறு வரிசை வகைக்கெழுக்களையும் தொடர்புபடுத்துகிறது. வகையீட்டுச் சமன்பாடுகளின் பயன்களில், சார்புகள் இயல்பு அளவுகளைக் குறிக்கின்றன. வகைக்கெழுக்கள் அவற்றின் மாறுதல் விகிதத்தைக் குறிக்கிறது. மேலும் சமன்பாடானது அவை இரண்டுக்குமான தொடர்பை வரையறுக்கிறது. இவ்வகையான தொடர்புகள் பல துறைகளில் பொதுவாகக் காணப்படக்கூடியவை என்பதால், பொறியியல், இயற்பியல், பொருளியல், உயிரியல் போன்ற முக்கியமான பலதுறைகளில் வகையீட்டுச் சமன்பாடுகள் பெரிதும் பயன்படுகின்றன.
தூய கணிதத்தில், வகையீட்டுச் சமன்பாடுகள் வெவ்வேறு கருத்தில் படிக்கப்படுகின்றன, அவற்றுள் முக்கியமானது தீர்வுகளை (சமன்பாட்டைத் தீர்க்கும் செயலியை) கண்டுபிடிப்பதாகும். எளிய வகையீட்டுச் சமன்பாடுகள் மட்டுமே தெளிவான சூத்திரங்கள் மூலம் தீர்க்கப்படக்கூடியன; இருப்பினும், ஒரு கொடுக்கப்பட்ட வகையீட்டுச் சமன்பாட்டின் தீர்வுகளின் சில பண்புகளை அவற்றின் சரியான வடிவத்தைக் கண்டுபிடிக்காமலே தீர்மானிக்க முடியும்.
தீர்வுக்கான ஒரு சுய வரையறுக்கப்பட்ட சூத்திரம் கிடைக்கவில்லையெனில், தீர்வானது கணினியைப் பயன்படுத்தி எண்ணியல்ரீதியாக தோராயமாகப் பெறப்படுகிறது. இயங்கு அமைப்புகள் பற்றிய கருத்தியலானது வகையீட்டுச் சமன்பாடுகளால் விவரிக்கப்படும் பண்பியல்ரீதியான பகுப்பாய்வை வலியுறுத்துகிறது. அதேவேளையில், கொடுக்கப்பட்ட துல்லியத் தன்மையுடன் தீர்வினைக் காண்பதற்கு பல எண்ணியல் முறைகளும் உருவாக்கப்பட்டுள்ளன.
வரலாறு
வகையீட்டுச் சமன்பாடுகள் முதன்முதலாக நியூட்டன் மற்றும் லிபினிட்சுநுண்கணிதத்தைக் கண்டறிந்ததில் இருந்து பயன்பாட்டுக்கு வந்தது. ஐசாக் நியூட்டன் "மெத்தேடசு பிலக்சியோனம் எட்டு சீரியரம் இன்பினிட்ரம்" என்ற தனது 1671 ஆம் ஆண்டு நூலின் இரண்டாவது அத்தியாயத்தில் மூன்று வகையான வகையீட்டுச் சமன்பாடுகளைப் பட்டியலிட்டுள்ளார்[1]:
அவர் இச்சமன்பாடுகளை முடிவிலாத் தொடர்களைப் பயன்படுத்தி தீர்த்து, தீர்வுகளின் தனித்துவமற்ற தன்மையினை விவரிக்கிறார்.
ஜேக்கப் பெர்னூலி 1695 ஆம் ஆண்டு தனது பெர்னூலி வகையீட்டுச் சமன்பாட்டினை முன்வைத்தார்,[2] இது சாதாரண வகையீட்டுச் சமன்பாடு வடிவம் கொண்டதாகும்,
இதற்கான தீர்வினை அடுத்த ஆண்டு லிபினிட்சு இதை எளிமைப்படுத்துவதின் மூலம் கண்டறிந்தார்.[3]
ஆய்லர்-லாக்ராஞ்சி சமன்பாடு 1750 இல் ஆய்லர் மற்றும் லாக்ராஞ்சியால் அவர்களின் சமநேரவளைவு (tautochrone) கணக்கு குறித்து உருவாக்கப்பட்டது. இது தொடக்கப்புள்ளியைச் சார்ந்திராமல், ஒரு எடையறிப்பட்ட பொருள் குறிப்பிட்ட நேரத்தில் குறிப்பிட்ட புள்ளியை நோக்கி விழும் வளைவைத் தீர்மானிக்கும் கணக்காகும்.
லாக்ராஞ்சி இக்கணக்கினைத் தீர்த்து 1755 இல் ஆய்லருக்கு அனுப்பினார். பின்னர் இருவரும் லாக்ராஞ்சியின் முறையை மேம்படுத்தி அதனை இயக்கவியலில் நடைமுறைப்படுத்தினர். இது லாக்ராஞ்சியின் இயக்கவியல் உருவாக்கத்திற்கு இட்டுச் சென்றது.
ஃவூரியேயின்வெப்பப் பாய்வு குறித்தான தனது கண்டுபிடிப்புகளை "வெப்பத்தின் பகுப்பாய்வுக் கருத்தியல்" (Théorie analytique de la chaleur, ஆங்கிலம்: The Analytic Theory of Heat)[9] என்பதில் பதிப்பித்தார், அதில் அவர் நியூட்டனின் குளிர்வு விதி குறித்த தனது புரிதல்களை விளக்கினார். அதன்படி, இரண்டு அடுத்தடுத்த மூலக்கூறுகளுக்கு இடையேயான வெப்பப் பாய்வானது அவற்றிற்கு இடையே உள்ள மிகச் சிறிய வெப்பநிலை வித்தியாசத்திற்கு நேர்த்தகவில் இருக்கும். இந்நூல் வெப்பப் கடத்துகை விரவல் குறித்த ஃவூரியேயின் வெப்பச் சமன்பாடுகளைக் கொண்டுள்ளது. இந்தப் பகுதி வகைக்கெழு சமன்பாடுகள் கணித இயற்பியல் மாணவர்களுக்கு அடிப்படைப் பாடங்களாக உள்ளன.
வரையறை
ஒன்று அல்லது அதற்கு மேற்பட்ட சாராமாறிகள், அதனைச் சார்ந்த மாறி மற்றும் அதன் வகையீடுகளில் அமைந்த சமன்பாடு, ஒரு வகையீட்டுச் சமன்பாடாகும்.
சார்பின் வகைக்கெழு -ஆனது x -ஐப் பொறுத்த y-ன் மாறுவீதம். அறிவியலின் அடிப்படைக் கருத்துக்களின்படி எந்தவொரு மாறும் கணியத்திற்கும் அதன் மாறுவீதத்திற்கும் தொடர்பு உள்ளது. அந்தத் தொடர்பைக் கணித முறையில் எழுதும்போது கிடைப்பதுதான் வகையீட்டுச் சமன்பாடுகள்.
எடுத்துக்காட்டு:
s தொலைவிலிருந்து விழும் ஒரு பொருளின் வேகம், நேரம் t -க்கு நேர்விகிதத்தில் அமையும் என்பது இயற்பியலின் அடிப்படைக் கூற்று. இக்கூற்றை வகைக்கெழுச் சமன்பாடாக எழுத:
இங்கு ds/dt -அப்பொருளின் திசைவேகம்.
வகைக்கெழுச் சமன்பாடுகளின் வரிசை மற்றும் படி
ஒரு வகையீட்டுச் சமன்பாட்டில் அமைந்துள்ள வகைக்கெழுக்களின் வரிசையில் மிக அதிகமான வரிசை, அவ்வகைக்கெழுச் சமன்பாட்டின் வரிசை ஆகும்.
ஒரு வகையீட்டுச் சமன்பாட்டில் அமைந்துள்ள வகைக்கெழுக்களில் மிக அதிகமான வரிசையுடைய வகைக்கெழுவின் படி, அவ்வகைக்கெழுச் சமன்பாட்டின் படி ஆகும். ஆனால் வகைக்கெழுக்களின் அடுக்குகள் பின்னமாகவோ அல்லது படிமூலங்களாகவோ இருப்பின் அவற்றை தக்க முறையில் நீக்கிய பின்பே வகையீட்டுச் சமன்பாட்டின் படி காண வேண்டும்.
வகைக்கெழுச் சமன்பாடு
உயர்வரிசை வகைக்கெழு உறுப்பு
வரிசை
படி
1
1
2
1
:
2
2
3
1
வகைகள்
வகைக்கெழுச் சமன்பாடுகள் இரு வகைப்படும்.
சாதாரண வகைக்கெழுச் சமன்பாடுகள்
பகுதி வகைக்கெழுச் சமன்பாடுகள்
சாதாரண வகைக்கெழுச் சமன்பாடுகள்
ஒரு வகைக்கெழுச் சமன்பாட்டில் வெளிப்படையாகவோ அல்லது மறைமுகமாகவோ ஒரேயொரு சாராமாறி மட்டுமே இடம்பெறுமானால் அச்சமன்பாடு சாதாரண வகைக்கெழுச் சமன்பாடு எனப்படும்.
எடுத்துக்காட்டுகள்:
கீழே தரப்பட்டுள்ள எடுத்துக்காட்டுகளில், u என்பது மாறி x -ல் அமைந்த ஒரு சார்பு மற்றும் c , ω மதிப்புத் தெரிந்த மாறிலிகள் என்க.
பகுதி வகைக்கெழுச் சமன்பாடுகள்
ஒரு வகைக்கெழுச் சமன்பாட்டில் வெளிப்படையாகவோ அல்லது மறைமுகமாகவோ பல சாராமாறிகளும் அவற்றைப் பொறுத்த பகுதி வகைக்கெழுக்களும் இடம்பெறுமானால் அச்சமன்பாடு பகுதி வகைக்கெழுச் சமன்பாடு எனப்படும்.
எடுத்துக்காட்டுகள்:
கீழே தரப்பட்டுள்ள எடுத்துக்காட்டுகளில், u என்பது சாராமாறிகள் x மற்றும் t அல்லது x மற்றும் y-ல் அமைந்த ஒரு சார்பு.
சாதாரண மற்றும் பகுதி வகைகெழுச் சமன்பாடுகள் இரண்டுமே நேரியல் வகைக்கெழுச் சமன்பாடுகள் மற்றும் நேரியலில்லா வகைக்கெழுச் சமன்பாடுகள் என இரு பெரிய பிரிவுகளின் கீழ் பிரிக்கப்படுகின்றன. ஒரு வகைக்கெழுச் சமன்பாட்டிலுள்ள மதிப்பறியப்படாத சார்பு மற்றும் அதன் வகைக்கெழுக்களின் அடுக்குகள் ஒன்று எனில் அச்சமன்பாடு நேரியல் வகைக்கெழுச் சமன்பாடு எனவும் மாறாக அடுக்குகள் ஒன்றுக்கு மேற்பட்டதாக இருப்பின் அச்சமன்பாடு நேரியலில்லா வகைக்கெழுச் சமன்பாடு எனவும் அழைக்கப்படும்.
தீர்வுகள்
சில வகையீட்டுச் சமன்பாடுகளின் தீர்வுகளைக் குறிப்பிட்ட வடிவில் எழுதலாம். கீழே தரப்பட்டுள்ள அட்டவணையில் H(x), Z(x), H(y), Z(y), அல்லது H(x,y), Z(x,y) என்பவை சாராமாறிகள் x அல்லது y (அல்லது இரண்டிலும்) அமைந்த தொகையிடத்தக்க சார்புகள். A, B, C, I, L, N, M மாறிலிகள். பொதுவாக A, B, C, I, L -மெய்யெண்கள். எனினும் N, M, P மற்றும் Qகலப்பெண்களாகவும் இருக்கலாம். வகையீட்டுச் சமன்பாடுகள், தொகையிடத்தக்கச் சமான வடிவில் அமைந்துள்ளன.
ரெப்ளிகேட்டர் இயங்குநிலைகள் – கருத்தியல் உயிரியலில் காணப்படுகிறது
ஆட்சின்-அக்சிலி மாதிரி – நரம்பியல் செயல்பாட்டுத் திறம்
பொருளியியல்
பிளாக்-இசுஹோல்சு PDE
வெளிப்புற வளர்ச்சி மாதிரி
மால்தூசியின் வளர்ச்சி மாதிரி
விடேல்-வோல்பி விளம்பர மாதிரி
மேற்கோள்கள்
↑Newton, Isaac. (c.1671). Methodus Fluxionum et Serierum Infinitarum (The Method of Fluxions and Infinite Series), published in 1736 [Opuscula, 1744, Vol. I. p. 66].
↑Bernoulli, Jacob (1695), "Explicationes, Annotationes & Additiones ad ea, quae in Actis sup. de Curva Elastica, Isochrona Paracentrica, & Velaria, hinc inde memorata, & paratim controversa legundur; ubi de Linea mediarum directionum, alliisque novis", Acta Eruditorum
↑Hairer, Ernst; Nørsett, Syvert Paul; Wanner, Gerhard (1993), Solving ordinary differential equations I: Nonstiff problems, Berlin, New York: Springer-Verlag, ISBN978-3-540-56670-0
↑Wheeler, Gerard F.; Crummett, William P. (1987). "The Vibrating String Controversy". American Journal of Physics55 (1): 33–37. doi:10.1119/1.15311. Bibcode: 1987AmJPh..55...33W.
D. Zwillinger, Handbook of Differential Equations (3rd edition), Academic Press, Boston, 1997.
A. D. Polyanin and V. F. Zaitsev, Handbook of Exact Solutions for Ordinary Differential Equations (2nd edition), Chapman & Hall/CRC Press, Boca Raton, 2003. பன்னாட்டுத் தரப்புத்தக எண்1-58488-297-2.