விகிதம்

செந்தரத் தொலைக்காட்சியின் அகல உயரத்தின் விகிதம்.

விகிதம் (Ratio) என்பது இரண்டு எண்களுக்கு இடையில் உள்ள உறவினை குறிக்கும்.[1] இது பெரும்பாலும் முழு எண்களாக எழுதப்படும். விகிதத்தில் குறிப்பிடும் இரண்டு எண்களும் ஒரே வகையானதாக இருக்க வேண்டும். விகிதங்களுக்கு அலகில்லை. a, b இரண்டு எண்களின் விகிதத்தை a:b எனக் குறிப்பர். a முகப்பெண் எனவும், b பின்னுறுப்பு எனவும் அழைக்கப்படும். விகிதத்தில் வரிசை முக்கியமானது. a:b ≠ b:a. சில நேரங்களில் விகிதமானது பரிமாணமில்லாத வகுத்தல் ஈவாக குறிப்பிடப்படுகிறது[2].

எடுத்துக்காட்டு: ஒரு பழக் கிண்ணத்தில் எட்டு ஆரஞ்சுகளும் ஆறு எலுமிச்சம் பழங்களும் உள்ளன எனில்: *ஆரஞ்சுக்கும் எலுமிச்சம் பழத்திற்குமுள்ள விகிதம் 8:6 (4:3)

  • எலுமிச்சம் பழங்களுக்கும் ஆரஞ்சுக்குமுள்ள விகிதம் 6:8 (3:4)
  • ஆரஞ்சுக்கும் கிண்ணத்திலுள்ள மொத்த பழங்களுக்குமான விகிதம் 8:14 (4:7)
  • எலுமிச்சைக்கும் மொத்த பழங்களுக்குமான விகிதம் 6:14 (3:7)

வரலாறும் சொற்பிறப்பியலும்

விகிதக் கருத்துரு தோன்றக் காரணமான எண்ணங்கள் எழுத்தறியாக் கலாச்சாரத்துக்கு முன்னமேயே வழக்கில் இருந்திருக்கின்றன. எனவே, விகிதக் கருத்துருவின் மூலத்தைக் கண்டறிதல் என்பது இயலாததாகும். எடுத்துக்காட்டாக, ஒரு கிராமமானது மற்றொரு கிராமத்தைவிட இருமடங்கு பெரியதாக இருக்கிறது என்பதைப் புரிந்து கொள்வது அடிப்படை இயல்பு. அதனால் விகிதக் கருத்துருவானது வரலாற்றுக் காலத்துக்கு முந்தைய சமுதாயத்தால் அறியப்பட்டிருந்திருத்தல் வேண்டும்.[3] எனினும் பண்டைய கிரேக்கச் சொல்லான λόγος (logos) என்பது, "விகிதம் (ratio)" என்ற சொல்லின் மூலமாகக் கருதப்படுகிறது. துவக்ககால மொழிபெயர்ப்பாளர்கள் இதனை இலத்தீன் மொழியில் விகிதம் (ratio) எனத் தந்தனர். விகிதம் குறித்த யூக்ளிடின் கூற்றுகளுக்கான சமீபகால விளக்கம், விகிதங்களின் கணக்கிடுதலுக்கு ஏற்றதாக உள்ளது[1] இடைக்கால அறிஞர்கள், விகிதம் மற்றும் சம விகிதங்களைக் குறிப்பதற்கு விகிதசமன் (proportio: proportion") என்ற சொல்லைப் பயன்படுத்தினர்.[4]

துவக்ககால ஆதாரங்களிலிருந்து சேகரித்த விகிதக் கருத்துக்களை, யூக்ளிட் தனது எலிமென்ட்சு நூலில் அளித்துள்ளார். பித்தகோரசின் வழியாளர்கள் எண்களுக்குப் பயன்படக்கூடிய வகையில் ஒரு விகித மற்றும் விகிதசமக் கோட்பாட்டினை உருவாக்கினர்.[5] ஆனால் அவர்கள் கண்டுபிடித்த கோட்பாடு இன்றைய விகிதமுறு எண்களுக்கு மட்டும் பொருந்தக்கூடியதாக அமைந்திருந்தது. அவர்களால் வடிவவியலில் கண்டறியப்பட்ட அளவுக்கிணங்கா எண்களுக்கு (விகிதமுறா எண்கள்) அக்கோட்பாடு பொருந்தவில்லை. அளவுக்கிணங்கா எண்களுக்குப் பொருந்தாத இக்கோட்பாட்டைக் கண்டறிந்தவர் நீடியோசின் யூடாக்சசு ஆவார். காலத்தால் முந்தைய இந்த அளவுக்கிணங்கிய எண்களுக்கான விகிதசமக் கோட்பாட்டிற்கொத்த விரித்துரைப்பு, எலிமெண்ட்சு நூலின் புத்தகம் VII இல் காணப்படுகிறது[6]

யூக்ளிடின் வரையறைகள்

யூக்ளிடின் எலிமெண்ட்சின் புத்தகம் V இல் விகிதம் தொடர்பான 18 வரையறைகள் உள்ளன.[7][8] மிகவும் சாதாரணமான, பயன்பாட்டிலுள்ள கருத்துகளையே அவர் இவ்வரையறைகளில் பயன்படுத்தியுள்ளதால், அக்கருத்துக்களுக்கெனத் தனிப்பட்ட வரையறைகளை அவர் தரவில்லை.

  • முதல் இரண்டு வரையறைகளும், ஒரு அளவின் பங்கு மற்றும் மடங்கு குறித்த விவரங்களைத் தருகின்றன:
பங்கு என்பது ஒரு அளவையை அளக்கும். மறுதலையாக, மடங்கு என்பது ஒரு அளவால் அளக்கப்படும்.

தற்காலச் சொற்பயன்பாட்டில்,

எந்தவொரு எண்ணை ஒன்றைவிடப் பெரிய முழுஎண்ணால் பெருக்கினால் எடுத்துக்கொண்ட அளவு கிடைக்கிறதோ, அந்த எண்ணானது எடுத்துக்கொண்ட எண்ணின் பங்கு (வகுஎண்).
மடங்கு என்பது, எடுத்துக்கொண்ட அளவை ஒன்றைவிடப் பெரிய முழுஎண்ணால் பெருக்கக் கிடைப்பதாகும்.

"அளக்கும்" என்பது இங்கு பயன்படுத்தப்பட்டுள்ளவாறு யூக்ளிடால் வரையறுக்கப்படவில்லை. எனினும், ஒரு அளவை அளவீட்டின் அலகாக எடுத்துக் கொண்டு மற்றொரு அளவை இந்த அலகின் முழுஎண் மடங்காக எழுத முடிந்தால், முதல் அளவானது இரண்டாவதை அளக்கும் என அறிந்து கொள்ளலாம். இந்த வரையறைகள் புத்தகம் VII இல் மூன்றாவது மற்றும் ஐந்தாவது வரையறைகளாக கிட்டத்தட்ட ஒரேமாதிரியான சொற்பயன்பாட்டுடன் தரப்பட்டுள்ளதைக் காணலாம்.

  • மூன்றாவது வரையறை, விகிதம் என்றால் என்ன என்பதைப் பொதுவாக விளக்குகிறது.

கணிதரீதியாக இவ்வரையறை அவ்வளவாக சீராக இல்லையென்பதால் சிலர் இதனை யூக்ளிட் தந்ததல்ல; அவரது பதிப்பாளர்களால் இணைக்கப்பட்டது என்று கருதுகின்றனர்.[9]

ஒரேவகையான அளவைகளிடைப்பட்டதாக, யூக்ளிட் விகிதத்தை வரையறுக்கிறார். எனவே இதன்படி, இரு நீளங்கள் அல்லது இரு பரப்பளவுகளின் விகிதங்களை வரையறுக்கலாம். ஆனால் ஒரு நீளம் மற்றும் பரப்பளவுக்கிடையே விகிதத்தை வரையறுக்க முடியாது.
  • நான்காவது வரையறையானது மூன்றாவது வரையறையை மேலும் மேம்படுத்துகிறது. இவ்வரையறைப்படி,
ஒன்றின் மடங்கானது மற்றதைவிட அதிகமானதாக உள்ளவாறு இரு அளவுகளுக்கும் மடங்குகள் இருந்தால், அவ்விரு அளவுகளின் விகிதம் காணமுடியும்.

நவீனக் குறியீட்டில்,

mp>q , nq>p என்றவாறு முழுஎண்கள் m , n இருந்தால், p , q இரண்டின் விகிதம் காணமுடியும். இது ஆர்க்கிமிடீயப் பண்பு என அழைக்கப்படுகிறது.
  • ஐந்தாம் வரையறையில் சம விகிதங்கள் குறித்து பேசப்பட்டுள்ளது. தற்காலத்தில், அளவுகளின் ஈவுகள் சமமாக இருந்தால் அவற்றின் விகிதங்கள் சமம் எனக் கூறி விடலாம். ஆனால் அளவுக்கிணங்கா எண்களின் ஈவுகளை யூக்ளிட் ஏற்றுக்கொள்ளாததால், இவ்விளக்கம் அவரைப் பொறுத்தவரை சரியானதாகாது. எனவே, மேலும் நுட்பமான வரையறை தேவைப்படுகிறது. ஒரு விகிதத்துடன் விகிதமுறு மதிப்பொன்றை இணைக்க முடியாவிட்டாலும் அதனை ஒரு விகிதமுறு எண்ணுடன் ஒப்பிடலாம்.

தரப்பட்டுள்ள இரு அளவுகள் p , q; m/n ஒரு விகிதமுறு எண் எனில், np ஆனது, mq ஐ விடச் சிறியதாக அல்லது சமமானதாக அல்லது பெரியதாக இருப்பதைப் பொறுத்து, p : q ஆனது முறையே, m/n ஐ விடச் சிறியதாக அல்லது சமமாக அல்லது பெரியதாக இருக்கும் எனலாம்.

விகித சமம் குறித்த யூக்ளிடின் வரையறைப்படி, ஒரு விகிதமுறு எண்ணைவிடச் சிறியதாக, சமமாக அல்லது பெரியதாக இருப்பதில் ஒத்த நிலைப்பாடு கொண்டுள்ள இரு விகிதங்கள் சமமாகும்.

தற்காலக் குறியீட்டில்,

p, q, r , s தரப்பட்டுள்ள அளவுகள்; m , n நேர்ம முழுஎண்கள் எனில்,

nr<ms, nr=ms, nr>ms என்பதைப் பொறுத்து முறையே, np<mq, np=mq, np>mq என இருக்குமானால்:
p:q :: r:s ஆகும்.
  • ஆறாம் வரையறைப்படி, ஒரே விகிதமுடைய அளவுகள் விகிதசமனானவை (proportional) எனப்படும். விகிதசமன் என்பதற்கு யூக்ளிட் பயன்படுத்திய கிரேக்கச் சொல் ἀναλόγον (analogon) ஆகும்.
  • ஏழாம் வரையறையில் ஒரு விகிதம் மற்றொரு விகிதத்தைவிடச் சிறியதாக அல்லது பெரியதாக இருப்பதை விளக்குகிறது. இவ்வரையறை ஐந்தாம் வரையறையை அடிப்படையாய்க் கொண்டது.

தற்காலக் குறியீட்டில்,

p, q, r , s நான்கும் தரப்பட்ட அளவுகள் எனில், m , n முழுஎண்களுக்கு np>mq மற்றும் nrms என்பது உண்மையானால் p:q > r:s ஆகும்.
  • எட்டாம் வரையறை யூக்ளிடின் பதிப்பாளர்களால் சேர்க்கப்பட்டதாக இருக்கவேண்டும் என்பது சிலரது கருத்தாக உள்ளது.

இவ்வரையறையின்படி,

p:q :: q:r எனில், p, q , r மூன்றும் விகிதசமனானவை.

இது நான்கு அளவுகளுக்கும் நீட்டிக்கப்படுகிறது:

p:q :: q:r :: r:s எனில், p, q, r , s நான்கும் விகிதசமனானவை.
  • அடுத்தடுத்த உறுப்புகளின் விகிதங்களைச் சமமாகக் கொண்ட பெருக்குத் தொடர் கருத்தை ஒன்பதாம் மற்றும் பத்தாம் வரையறைகள் கொண்டுள்ளன.
p, q , r மூன்றும் விகிதசமனானவை எனில், p:r என்பது p:q இன் இருபடிவிகிதம்.
p, q, r , s நான்கும் விகிதசமனானவை எனில், p:s என்பது p:q இன் முப்படிவிகிதம்.
p, q , r மூன்றும் விகிதசமத்தில் இருந்தால், q (பெருக்கல் சராசரி ஆனது p , r இன் இடைவிகிதசமன் எனப்படும். அதேபோல p, q, r, s நான்கும் விகிதசமம் எனில், q , r இரண்டும் p, s இன் இடைவிகிதசமன்களாகும்.

உறுப்புகளின் எண்ணிக்கையும் பின்னப் பயன்பாடும்

இரு உறுப்புகள் கொண்ட விகிதத்தை அவ்விகிதத்திலுள்ள எண்களைக் கொண்ட பின்னமாக எழுதலாம்[10].

எடுத்துக்காட்டு:

2:3 விகிதத்தில் ஒப்பிடப்படும் முதல் அளவானது, விகிதத்தின் இரண்டாம் அளவில் பங்காகும்..

2 ஆரஞ்சுகளும் 3 ஆப்பிள்களும் விகிதத்தில் எழுதப்பட்டால்:

ஆரஞ்சுக்கும் ஆப்பிள்களுக்குமான விகிதம் 2:3
ஆரஞ்சுகளுக்கும் மொத்த பழங்களுக்குமான விகிதம் 2:5.

இவ்விகிதங்களை பின்னங்களாகவும் எழுதலாம்:

ஆப்பிள்களின் எண்ணிக்கையைப் போல 2/3 அளவு ஆரஞ்சுகள் உள்ளன.
மொத்தப்பழங்களில் 2/5 அளவு ஆரஞ்சுகள் உள்ளன.

1:4 விகிதத்தில் ஆரஞ்சு பழச்சாற்றை நீருடன் கலக்க வேண்டுமெனில் ஒரு பங்கு ஆரஞ்சு பழச்சாற்றுடன் நான்கு பங்கு நீர் கலக்க வேண்டும். சேர்க்கப்பட்ட நீரில் 1/4 பங்கு ஆரஞ்சுப் பழச்சாறு ஆகும். ஆனால் மொத்தக் கலவையில் ஆரஞ்சு பழச் சாற்றின் அளவு 1/5 ஆகும். a:b ≠ b:a; a/b ≠ b/a என்பதால், விகிதம் அல்லது பின்னம் இரண்டிலும் எதனுடன் எது ஒப்பிடப்படுகிறது என்பதில் தெளிவு அவசியம்.

இரண்டுக்கும் மேற்பட்ட அளவுகள் கொண்ட விகிதங்களையும் பின்னங்களாக எழுதலாம். ஆனால் ஒரு பின்னத்தால் இரு அளவுகளை மட்டுமே ஒப்பிட முடியும் என்பதால், அவற்றை ஒரே பின்னமாக எழுத முடியாது. இரண்டுக்கும் மேற்பட்ட அளவுகளைக் கொண்ட விகிதங்களில் இரு எண்களுக்கு ஒரு பின்னமெனக் கொண்டு பின்னங்களாக எழுதலாம்.

2:3:7 என்ற விகிதத்தில்

இரண்டாவது பொருளின் அளவில் பங்கும் மூன்றாவது பொருளின் அளவில் முதலாவது உள்ளது.
மூன்றாவது பொருளின் அளவில் பங்கு இரண்டாவது உள்ளது.

வீதமும் விழுக்காடு விகிதங்களும்

ஒரு விகிதத்திலுள்ள அனைத்து எண்களையும் ஒரே எண்ணால் பெருக்கினால் விகிதம் எந்தவிதத்திலும் மாற்றமடையாது. எடுத்துக்காட்டாக 3:2 விகிதமும், இதனை நான்கால் பெருக்கக் கிடைக்கும் 12:8 விகிதமும் சமமானது. பொதுவாக விகித பின்னங்கள் மீச்சிறு பொதுப் பகுதியெண்ணால் எளியவடிவிற்குக் குறைக்கப்படுவதும், நூறின் பங்குகளாக (விழுக்காடு) எழுதப்படுவதும் வழக்கிலுள்ளது.

ஒரு கலவையில் A, B, C, D ஆகிய நான்கு பொருட்கள் 5:9:4:2 என்ற விகிதத்தில் உள்ளன எனில், அதில் B இன் 9 பங்குகளுக்கு, C இன் 4 பங்குகளுக்கு மற்றும் D இன் 2 பங்குகளுக்கு A இன் அளவு 5 பங்குகளாகும். 5+9+4+2=20 என்பதால், மொத்தக் கலவையில் 5/20 பங்கு A, 9/20 பங்கு B, 4/20 பங்கு C, 2/20 பங்கு D உள்ளது. ஒவ்வொரு பொருளின் அளவையும் மொத்தப் பங்கான 20 ஆல் வகுத்து 100 ஆல் பெருக்கி விழுக்காடாக மாற்றினால் கலவையில் ஒவ்வொரு பொருளின் அளவு: 25% A, 45% B, 20% C, 10% D (25:45:20:10).

ஒரு பழக்கூடையில் இரு ஆப்பிள்களும் மூன்று ஆரஞ்சுகள் மட்டுமே இருந்து, வேறெந்தவிதப் பழங்களும் இல்லையென்றால், அக்கூடை இரு பங்கு ஆப்பிள்களும் மூன்று பங்கு ஆரஞ்சுகளும் கொண்டதாகும். முழுக்கூடையின் அல்லது 40% ஆப்பிள்களும், அல்லது 60% ஆரஞ்சுகளுமாக உள்ளன. இவ்வாறு ஒரு குறிப்பிட்ட பொருளை முழுப்பொருளுடன் ஒப்பிடுவது வீதம் அல்லது விகிதப்படி (proportion) எனப்படும்.

இரு அளவுகள் மட்டும் கொண்ட விகிதத்தை ஒரு பின்னமாக, குறிப்பாக பதின்ம பின்னமாக எழுதமுடியும். எடுத்துக்காட்டாக, பழைய தொலைகாட்சிப் பெட்டிகளின் திரையின் நீள-அகல விகிதம் 4:3. இதனை பின்னவடிவில் 4/3 எனவும், பதின்ம பின்ன வடிவில் 1.33:1 அல்லது சுருக்கமாக 1.33 (இரு பதின்ம இலக்கங்களுக்குத் தோராயப்படுத்தல்) எனவும் எழுதலாம். தற்கால தொலைகாட்சிப் பெட்டிகளின் திரையின் நீள-அகல விகிதம் 16:9 அல்லது 1.78. இவ்வாறு பதின்ம பின்னத்தில் எழுதுவதால் ஒப்பீடு எளிதாகிறது. 1.33, 1.78 இரண்டையும் ஒப்பிட்டுப் பார்த்து, எந்த தொலைக்காட்சிப் பெட்டி அகலமான பிம்பத்தைத் தரும் என்பதை அறிவது எளிது.

சுருக்குதல்

ஒரு விகிதத்திலுள்ள அனைத்து உறுப்பெண்களின் பொதுக்காரணிகளால் அவற்றை வகுப்பதன் மூலம் அவ்விகிதத்தை எளியவடிவிற்குச் சுருக்கலாம்.

40:60 விகிதத்தின் உறுப்பெண்கள் 40, 60 இன் பொதுக்காரணி 20 ஆல் வகுக்கக் கிடைக்கும் விகிதம் 2:3. இவற்றை எழுதும்முறை:

40:60 = 2:3 அல்லது 40:60 :: 2:3.

முழுஎண்களை உறுப்பெண்களாகக் கொண்ட ஒரு விகிதத்தை மேற்கொண்டு எவ்விதத்திலும் சுருக்கமுடியாதெனில், அவ்விகிதம் எளிய வடிவம் கொண்டது எனப்படும்.

சில சமயங்களில் ஒரு விகிதத்தை 1:x அல்லது x:1 வடிவில் எழுதுவது விகிதங்களை ஒப்பிடுவதற்குப் பயனுள்ளதாக இருக்கும். இதில் x ஒரு முழுஎண்ணாக இருக்க வேண்டுமென்பதில்லை.

எடுத்துக்காட்டு:

4:5 விகிதத்தின் இரு உறுப்பெண்களையும்

4 ஆல் வகுக்கக் கிடைக்கும் விகிதம் 1:1.25
5 ஆல் வகுக்கக் கிடைக்கும் விகிதம் 0.8:1

விகிதமுறா விகிதங்கள்

சில விகிதங்கள் அளவுக்கிணங்கா அளவுகளுக்கிடையே உள்ளவையாக இருக்கும். இவ்வளவுகளின் விகிதம் ஒரு விகிதமுறா எண். இதற்கான முதல் எடுத்துக்காட்டைக் கண்டறிந்தவர்கள் பித்தகோரசின் வழியாளர்கள் ஆவர்.

  • ஒரு சதுரத்தின் பக்கத்தைப் பொறுத்து அதன் மூலைவிட்டத்தின் விகிதம் 2 ஆகும்.
  • ஒரு வட்டத்தின் விட்டத்தைப் பொறுத்து அதன் சுற்றளவின் விகிதம் π ஆகும். இவ்வெண் ஒரு விகிதமுறா எண் மட்டுமல்ல, ஒரு விஞ்சிய எண் ஆகும்.
  • விகிதமுறா விகிதங்களுக்கு மற்றொரு எடுத்துக்காட்டு பொன் விகிதம் ஆகும்.

a:b = (a+b):a என பின்ன வடிவில் எழுதி நேர்மத் தீர்வுகாணக் கிடைக்கும் பொன்விகிதம் ஒரு விகிதமுறா எண். a , b இரண்டில் ஏதாவது ஒன்று விதமுறா எண்ணாக இருந்தால்தான் அவை பொன்விகிதத்தில் இருக்கமுடியும்.

மேற்கோள்கள்

  1. 1.0 1.1 Penny Cyclopedia, p. 307
  2. "தமிழ்நாடு பாடநூல்-ஆறாம் வகுப்பு-இரண்டாம் பருவம்-விகிதம்-விகிதசமம்-நேர்விகிதம் (பக்கம் 6)" (PDF). Archived from the original (PDF) on 2015-09-30. Retrieved 2016-03-02.
  3. Smith, p. 477
  4. Smith, p. 478
  5. Heath, p. 112
  6. Heath, p. 113
  7. Heath, reference for section
  8. http://aleph0.clarku.edu/~djoyce/elements/bookV/bookV.html
  9. "Geometry, Euclidean" பிரித்தானிக்கா கலைக்களஞ்சியம் பதினோராம் பதிப்பு p682.
  10. "தமிழ்நாடு பாடநூல்-ஆறாம் வகுப்பு-இரண்டாம் பருவம்-விகிதம்-விகிதசமம்-நேர்விகிதம் (பக்கம் 7)" (PDF). Archived from the original (PDF) on 2015-09-30. Retrieved 2016-03-02.
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia

Kembali kehalaman sebelumnya