முப்படியச் சமன்பாடு

முப்படிய செயற்கூற்றின் வரைவு. இம் முப்படிய செயற்கூறு மூன்று இடங்களில் x-அச்சை வெட்டுகின்றது (y = 0).

.

கணிதம் தோன்றிய காலத்திலிருந்து சமன்பாடுகளை விடுவித்துத் தீர்வு காணும் பிரச்சினை தலையாய பிரச்சினையாக இருந்து வருகிறது. காலம் செல்லச்செல்ல கணிதம் எடுத்துக்கொள்ளும் சமன்பாடுகளின் தரத்தில் உயர்வும் பின்னலும் காணப்படுகிறதே தவிர பிரச்சினை ஒன்றுதான். 15 வது நூற்றாண்டில் ஐரோப்பாவில் ஏற்பட்ட கணித மலர்ச்சியில் முதன் முதலில் முப்படியச் சமன்பாடு களைத் தீர்க்க முயன்று 16 வது நூற்றாண்டில் வெற்றியும் கண்டனர். முப்படியச் சமன்பாட்டில் சாரா மாறி யின் உயர்ந்த அடுக்கு மூன்றாக இருக்கும். அதை

என்று எடுத்துக்கொள்வதில் பொதுத்தன்மைக்கு ஒரு குந்தகமும் இல்லை. ஏனென்றால், இன் கெழு 1 ஆக இல்லாவிட்டால், முழு சமன்பாட்டையும் அக்கெழுவால் வகுத்து (*) காட்டும் உருவத்திற்குக் கொண்டுவந்துவிடலாம். அக்கெழு 0 வாக இருந்தால் சமன்பாடே இருபடியம் ஆகி விடும்.

டெல் ஃபெரோ வின் குறைக்கப்பட்ட முப்படியம்

1504 இல் டெல் ஃபெர்ரோ என்ற பொலோனா பல்கலைக்கழகக்கணித ஆசிரியர் , முப்படியத்தில் இன் கெழுவை வாக வைத்துக்கொண்டு முப்படியச் சமன்பாட்டிற்கு 'ஒரு' தீர்வு கண்டுபிடித்தார். அதாவது, அவர் எடுத்துக் கொண்ட சமன்பாடு

இதற்கு 'குறைக்கப்பட்ட முப்படியம்' (Depressed Cubic) என்று பெயர்.

டெல்ஃபெரோ ஏதோ ஒர் உள்ளுணர்வில் என்று வைத்துக்கொண்டார்.

இதை சமன்பாட்டில் பதிலீடு செய்தால், நமக்குக் கிடைப்பது

மேலும் ஓர் உள்ளுணர்வில், டெல்ஃபெரோ, இதை இரண்டு சமன்பாடாகப் பிரித்தார். அதாவது

, மற்றும்,

இவையிரண்டிலிருந்து,

இது என்ற மாறியில் ஒரு இருபடியம். அதனால்,

இதில் நேர்ம மூலத்தை எடுத்துக் கொண்டு, வைக் கணித்தால்,

இப்பொழுது, என்பதைப் பயன்படுத்தி

ஆக, நாம் எடுத்துக்கொண்ட முப்படியத்திற்குத்தீர்வு

மாறாக, என்பதால், இக்கோவையிலுள்ள இரண்டாவது உறுப்பில் ஒரு -1 ஐ மூலக்குறிக்கு வெளியில் எடுத்த பிறகு நமக்குக் கிடைப்பது, இதே க்கு இன்னொரு சமானமான கோவை:

துணை நூல்கள்

  • Paul J. Nahin. An Imaginary Tale: The story of . Princeton University Press. Princeton, New Jersey
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia

Kembali kehalaman sebelumnya