Антиголоморфна функція

Антиголоморфна функція (також антианалітична) — комплексна функція, тісно пов'язана з голоморфною функцією.

Визначення

Функція , визначена на відкритій підмножині комплексної площини, називається антиголоморфною, якщо її похідна по (де рискою позначається комплексне спряження)існує в усіх точках цієї множини. Визначення можна також записати аналогічно до умов Коші — Рімана:

де

Властивості

  • голоморфна в тоді і тільки тоді, коли антиголоморфна в .
  • Функція є антиголоморфною тоді і тільки тоді, коли її можна розкласти за ступенями у околі кожної точки її області визначення.
  • голоморфна в тоді і тільки тоді, коли антиголоморфна в .
  • якщо функція одночасно голоморфна і антиголоморфна, то вона є константою на будь-якій зв'язаній компоненті її області визначення.

Приклад

Функція є антиголоморфною в . Легко перевірити умови голоморфності:

Зрозуміло, що антиголоморфність відразу випливає з того, що дана функція є комплексно спряженою до функції , що є голоморфною у множині .

Див. також

Посилання

Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia

Kembali kehalaman sebelumnya